logo

Linear Transformation Trace 📂Linear Algebra

Linear Transformation Trace

Definition

Let VV be a nn-dimensional vector space. Let f:VVf : V \to V be a linear transformation. Let B={ei}B = \left\{ e_{i} \right\} be a basis of VV. Let n×nn \times n matrix AA be the matrix representation of ff with respect to BB.

A=[f]B A = [f]_{B}

Since f(ei)Vf(e_{i}) \in V, we represent it as f(ei)=fj(ei)ejf(e_{i}) = \sum f_{j}(e_{i})e_{j}. Then,

A=[f1(e1)f2(e1)fn(e1)f1(e2)f2(e2)fn(e2)f1(en)f2(en)fn(en)] A = \begin{bmatrix} f_{1}(e_{1}) & f_{2}(e_{1}) & \cdots & f_{n}(e_{1}) \\ f_{1}(e_{2}) & f_{2}(e_{2}) & \cdots & f_{n}(e_{2}) \\ \vdots & \vdots & \ddots & \vdots \\ f_{1}(e_{n}) & f_{2}(e_{n}) & \cdots & f_{n}(e_{n}) \end{bmatrix}

Define the trace of the linear transformation ff, trf\tr f, as follows:

trf:=tr(A)=ifi(ei) \tr f := \tr(A) = \sum_{i} f_{i}(e_{i})

Here, tr(A)\tr(A) is the trace of matrix AA.

Explanation

Since there exists a corresponding matrix for a linear transformation, the trace of the linear transformation can be naturally defined.

Basis Invariance

  • The trace of a linear transformation does not depend on the choice of basis.

By the definition, it might seem that the matrix AA depends on the basis, so choosing a different basis BB^{\prime} to obtain matrix AA^{\prime} would change the value of trf\tr f. However, the two matrices AA and AA^{\prime} are similar. Since the trace is invariant under similarity, trf\tr f is well defined irrespective of the choice of basis for VV.

Inner Product Representation

trf\tr f can be expressed using the given metric. Let’s say metric gg is given. Then,

g(f(ei),ek)=g(fj(ei)ej,ek)=fj(ei)g(ej,ek)=fj(ei)gjk g(f(e_{i}), e_{k}) = g( f_{j}(e_{i})e_{j}, e_{k} ) = f_{j}(e_{i}) g( e_{j}, e_{k} ) = f_{j}(e_{i})g_{jk}

Multiply both sides by gklg^{kl} and sum over index kk,

gklg(f(ei),ek)=fj(ei)gjkgkl=fj(ei)δjl=fl(ei) g^{kl} g(f(e_{i}), e_{k}) = f_{j}(e_{i})g_{jk}g^{kl} = f_{j}(e_{i})\delta_{j}^{l} = f_{l}(e_{i})

Therefore, we obtain the following.

trf=fi(ei)=g(f(ei),ek)gki \tr f = f_{i}(e_{i}) = g(f(e_{i}), e_{k})g^{ki}