logo

n-Dimensional Polar Coordinates 📂Vector Analysis

n-Dimensional Polar Coordinates

Definition1

Let’s say the Cartesian coordinates of point xRnx \in \mathbb{R}^{n} are x1,,xnx_{1}, \dots, x_{n}. Then, the relationship with its polar coordinates r,φ1,,φn1r, \varphi_{1}, \dots, \varphi_{n-1} is as follows.

xn=rcosφ1xn1=rsinφ1sinφ2xn2=rsinφ1cosφ2x4=rsinφ1sinφ2sinφn3sinφn2x3=rsinφ1sinφ2sinφn3cosφn2x2=rsinφ1sinφ2sinφn2sinφn1x1=rsinφ1sinφ2sinφn2cosφn1 \begin{align*} x_{n} &= r \cos \varphi_{1} \\ x_{n-1} &= r \sin \varphi_{1} \sin \varphi_{2} \\ x_{n-2} &= r \sin \varphi_{1} \cos \varphi_{2} \\ \vdots& \\ x_{4} &= r \sin \varphi_{1} \sin \varphi_{2} \cdots \sin \varphi_{n-3} \sin \varphi_{n-2} \\ x_{3} &= r \sin \varphi_{1} \sin \varphi_{2} \cdots \sin \varphi_{n-3} \cos \varphi_{n-2} \\ x_{2} &= r \sin \varphi_{1} \sin \varphi_{2} \cdots \sin \varphi_{n-2} \sin \varphi_{n-1} \\ x_{1} &= r \sin \varphi_{1} \sin \varphi_{2} \cdots \sin \varphi_{n-2} \cos \varphi_{n-1} \\ \end{align*}

Here,

0φiπ (1in2),0φn12π 0 \le \varphi_{i} \le \pi \ (1 \le i \le n-2), \quad 0 \le \varphi_{n-1} \le 2\pi

Explanation

The formula mentioned above can be confusing, but first, you set xnx_{n} as rcosφ1r\cos\varphi_{1} and take the other values according to the formula for x1,x2,x_{1}, x_{2}, \dots from below. For more detail, see the example below. It explains that in two dimensions, it’s called polar coordinates, and in three dimensions, it’s called spherical coordinates, but you don’t have to call them that way. Physics typically does not deal with dimensions beyond nn, so this distinction is important, and the names actually signify the 2D and 3D nature. However, in mathematics, the terms polar coordinates or spherical coordinates feel much less restricted by dimension. It seems like a matter of preference how one uses them.


n=2n=2

This case is particularly referred to as polar coordinates, commonly denoted by θ=φ1\theta = \varphi_{1}. Then x2x_{2} is

x2=xn=rcosφ1=rcosθ x_{2} = x_{n} = r \cos \varphi_{1} = r \cos \theta

x1x_{1}, when substituting n=2n=2, becomes

x1=rsinφ1sinφn2cosφn1=rsinφ1=rsinθ x_{1} = r \sin \varphi_{1} \cdots \sin \varphi_{n-2} \cos \varphi_{n-1} = r \sin \varphi_{1} = r \sin \theta

Therefore,

x2=y=rcosθx1=x=rsinθ \begin{align*} x_{2} &= y = r \cos \theta \\ x_{1} &= x = r \sin \theta \\ \end{align*}

x=r2cos2θ+r2sin2θ=r2=r \left| \mathbf{x} \right| = r^{2} \cos^{2}\theta + r^{2} \sin^{2}\theta = r^{2} = \left| \mathbf{r} \right|


n=3n=3

This case is particularly referred to as spherical coordinates, commonly expressed by θ=φ1\theta = \varphi_{1}, ϕ=φ2\phi = \varphi_{2}. x3x_{3} is

x3=xn=rcosφ1=rcosθ x_{3} = x_{n} = r \cos \varphi_{1} = r \cos \theta

x2x_{2}, when substituting n=3n=3, becomes

x2=rsinφ1sinφn2sinφn1=rsinφ1sinφ2=rsinθsinφ x_{2} = r \sin \varphi_{1} \cdots \sin \varphi_{n-2} \sin \varphi_{n-1} = r \sin \varphi_{1} \sin \varphi_{2} = r \sin \theta \sin \varphi

x1x_{1}, when substituting n=3n=3, becomes

x1=rsinφ1sinφn2cosφn1=rsinφ1cosφ2=rsinθcosφ x_{1} = r \sin \varphi_{1} \cdots \sin \varphi_{n-2} \cos \varphi_{n-1} = r \sin \varphi_{1} \cos \varphi_{2} = r \sin \theta \cos \varphi

5EF2C2833.png

Therefore,

x3=z=rcosθx2=y=rsinθsinφx1=x=rsinθcosφ \begin{align*} x_{3} &= z= r \cos \theta \\ x_{2} &= y= r \sin \theta \sin \varphi \\ x_{1} &= x= r \sin \theta \cos \varphi \end{align*}

x=x12+x22+x32=r2sin2θcos2φ+r2sin2θsin2φ+r2cos2θ=r2sin2θ+r2cos2θ=r2=r \begin{align*} \left| \mathbf{x} \right| = x_{1}^{2} + x_{2}^{2} + x_{3}^{2} &= r^{2}\sin^{2}\theta\cos^{2}\varphi + r^{2}\sin^{2}\theta\sin^{2}\varphi + r^{2}\cos^{2}\theta \\ &= r^{2}\sin^{2}\theta + r^{2}\cos^{2}\theta \\ &= r^{2} \\ &= \left| \mathbf{r} \right| \end{align*}


n=4n=4

Let’s just go up to n=4n=4. x4x_{4} is,

x4=xn=rcosφ1 x_{4} = x_{n} = r \cos \varphi_{1}

x3x_{3}, when substituting n=4n=4, becomes

x3=rsinφ1sinφn3cosφn2=rsinφ1cosφ2 x_{3} = r \sin \varphi_{1} \cdots \sin \varphi_{n-3} \cos \varphi_{n-2} = r \sin \varphi_{1} \cos \varphi_{2}

x2x_{2}, when substituting n=4n=4, becomes

x2=rsinφ1sinφn2sinφn1=rsinφ1sinφ2sinφ3 x_{2} = r \sin \varphi_{1} \cdots \sin \varphi_{n-2} \sin \varphi_{n-1} = r \sin \varphi_{1} \sin \varphi_{2} \sin \varphi_{3}

x1x_{1}, when substituting n=4n=4, becomes

x1=rsinφ1sinφn2cosφn1=rsinφ1sinφ2cosφ3 x_{1} = r \sin \varphi_{1} \cdots \sin \varphi_{n-2} \cos \varphi_{n-1} = r \sin \varphi_{1} \sin \varphi_{2} \cos \varphi_{3}

Therefore,

x4=rcosφ1x3=rsinφ1cosφ2x2=rsinφ1sinφ2sinφ3x1=rsinφ1sinφ2cosφ3 \begin{align*} x_{4} &= r \cos \varphi_{1} \\ x_{3} &= r \sin \varphi_{1} \cos \varphi_{2} \\ x_{2} &= r \sin \varphi_{1} \sin \varphi_{2} \sin \varphi_{3} \\ x_{1} &= r \sin \varphi_{1} \sin \varphi_{2} \cos \varphi_{3} \end{align*}

x=x12+x22+x32+x42=(rsinφ1sinφ2cosφ3)+rsinφ1sinφ2sinφ3=(r2sin2φ1sin2φ2cos2φ3)+(r2sin2φ1sin2φ2sin2φ3)+(r2sin2φ1cos2φ2)+(r2cos2φ1)=(r2sin2φ1sin2φ2)+(r2sin2φ1cos2φ2)+(r2cos2φ1)=(r2sin2φ1)+(r2cos2φ1)=r2=r \begin{align*} \left| \mathbf{x} \right| &= x_{1}^{2} + x_{2}^{2} + x_{3}^{2} + x_{4}^{2} \\ &= (r \sin \varphi_{1} \sin \varphi_{2} \cos \varphi_{3}) + r \sin \varphi_{1} \sin \varphi_{2} \sin \varphi_{3}\\ &= (r^{2} \sin^{2} \varphi_{1} \sin^{2} \varphi_{2} \cos^{2} \varphi_{3}) + (r^{2} \sin^{2} \varphi_{1} \sin^{2} \varphi_{2} \sin^{2} \varphi_{3}) + (r^{2} \sin^{2} \varphi_{1} \cos^{2} \varphi_{2}) + (r^{2} \cos^{2} \varphi_{1}) \\ &= (r^{2} \sin^{2} \varphi_{1} \sin^{2} \varphi_{2}) + (r^{2} \sin^{2} \varphi_{1} \cos^{2} \varphi_{2}) + (r^{2} \cos^{2} \varphi_{1}) \\ &= (r^{2} \sin^{2} \varphi_{1}) + (r^{2} \cos^{2} \varphi_{1}) \\ &= r^{2} \\ &= \left| \mathbf{r} \right| \end{align*}


x0x \ne 0 allows us to obtain the following.

θ=xxSn1,x=rθ,r=x>0 \boldsymbol{\theta} = \dfrac{x}{\left| x \right|} \in S^{n-1}, \quad x = r\boldsymbol{\theta},\quad r = \left| x \right| > 0

Note that θ\boldsymbol{\theta} here is not an angle. The Cartesian coordinates θ1,,θn\theta_{1}, \dots, \theta_{n} are expressed by the following formula.

cosφk1=θkrk,sinφk1=rk1rk2,rk=(θ12,,θk2)1/2 \cos \varphi_{k-1} = \dfrac{\theta_{k}}{r_{k}}, \quad \sin \varphi_{k-1} = \frac{r_{k-1}}{r_{k-2}},\quad r_{k} = \left( \theta_{1}^{2}, \dots, \theta_{k}^{2} \right)^{1/2}

Furthermore, the mapping from Rn{0}\mathbb{R}^{n} \setminus \left\{ 0 \right\} to R+×Sn1\mathbb{R}_{+} \times S^{n-1} x(r,θ)x \mapsto (r, \boldsymbol{\theta}) is continuous and bijective.

Properties

The following integral holds. For fL1(Rn)f \in L^{1}(\mathbb{R}^{n}),

Rxf(x)dx=Sn10f(rθ)rn1drdθ \int_{\mathbb{R}^{x}} f(x) dx = \int\limits_{S^{n-1}} \int\limits_{0}^{\infty} f(r \boldsymbol{\theta}) r ^{n-1}dr d\boldsymbol{\theta}


  1. Boris Rubin, Introduction to Radon Transforms With Elements of Fractional Calculus and Harmonic Analysis (2015), p26-27 ↩︎