Gaussian Curvature and Mean Curvature
Definition1
Let’s consider the principal curvature at a point $p$ on a surface $M$ be denoted as $\kappa_{1}, \kappa_{2}$. Let $L$ be referred to as the Weingarten map. The Gaussian curvature $K$ is defined as follows:
$$ K := \kappa_{1} \kappa_{2} = \det L = \det ([{L^{i}}_{j}]) $$
where ${L^{i}}_{j} = \sum \limits_{k} L_{kj}g^{ki}$ applies.
Formula
- The product of the principal curvatures
$$ K = \kappa_{1} \kappa_{2} $$
- Gaussian curvature can be expressed with the Riemann curvature tensor.
$$
$$
- Gaussian curvature can be expressed with Christoffel symbols.
$$ K = $$
- The Gaussian curvature at point $p$ can be shown using the Gauss map and area of the domain.
$$ K = \lim\limits_{\mathscr{R} \to p} \dfrac{A(\nu (\mathscr{R}))}{A(\mathscr{R})} $$
Theorems
$H^{2} \ge K$ holds.
Let $\mathbf{X}, \mathbf{Y}$ be the orthonormal vectors at point $p$. Then, the following is true:
$$ H = \dfrac{1}{2}\left( II(\mathbf{X}, \mathbf{X}) + II(\mathbf{Y}, \mathbf{Y}) \right) $$
- Let $\mathbf{Y} \in T_{p}M$ be the unit tangent vector, $\kappa_{n}$ be the normal curvature, and $\theta$ be the angle between the principal directions $\mathbf{X}_{1}$ and $\mathbf{Y}$. The following holds:
$$ H = \dfrac{1}{2\pi}\int_{0}^{2\pi}\kappa_{n}d\theta $$
Proof
3.
Given that $\kappa_{n} = II(\mathbf{Y}, \mathbf{Y})$ and $II(\mathbf{Y}, \mathbf{Y}) = \kappa_{1}\cos^{2}\theta + \kappa_{2}\sin^{2}\theta$,
$$ \begin{align*} \dfrac{1}{2\pi}\int_{0}^{2\pi}\kappa_{n}d\theta &= \dfrac{1}{2\pi}\int_{0}^{2\pi} \kappa_{1}\cos^{2}\theta + \kappa_{2}\sin^{2}\theta d\theta \\ &= \dfrac{1}{2\pi} \left( \kappa_{1} \int_{0}^{2\pi} \cos^{2} d\theta + \kappa_{2} \int_{0}^{2\pi}\sin^{2}\theta d\theta \right) \\ &= \dfrac{1}{2\pi} \left( \kappa_{1} \pi + \kappa_{2} \pi \right) \\ &= \dfrac{\kappa_{1} + \kappa_{2}}{2} \\ &= H \end{align*} $$
(Refer to trigonometric integral table $(2), (3)$)
■
Richard S. Millman and George D. Parker, Elements of Differential Geometry (1977), p130 ↩︎