logo

Eigenvalues and Eigenvectors 📂Matrix Algebra

Eigenvalues and Eigenvectors

Definition1

Given a matrix n×nn\times n AA, for a non-zero column vector 0\mathbf{0} n×1n\times 1 and a constant x\mathbf{x}, the following equation is referred to as the eigenvalue equation or the eigenvalue problem.

Ax=λx \begin{equation} A \mathbf{x} = \lambda \mathbf{x} \end{equation}

For a given AA, a x\mathbf{x} that satisfies the eigenvalue equation above is called the eigenvalue of AA, and n×1n\times 1 is called the eigenvector corresponding to the eigenvalue x\mathbf{x} of AA.

Explanation

The definition above applies not only when λR\lambda \in \mathbb{R} and xRn\mathbf{x} \in \mathbb{R}^{n}, but also when λC\lambda \in \mathbb{C} and xCn\mathbf{x} \in \mathbb{C}^{n}. The condition “non-zero” is important because, as the following equation shows, if x=0\mathbf{x} = \mathbf{0}, the equation always holds.

A0=0=λ0 A \mathbf{0} = \mathbf{0} = \lambda \mathbf{0}

Geometric Motivation

If the direction of a vector x\mathbf{x} remains the same after being transformed by the matrix AA, this implies there exists some real number λ\lambda such that

Ax=λx A \mathbf{x} = \lambda \mathbf{x}

While the matrix AA itself does not possess any notion of direction, if it has eigenvectors, it can be said to indicate a specific direction. Thus, such vectors x\mathbf{x} are named eigenvectors. Consider a matrix such as 2×22\times 2.

A=[6223] A = \begin{bmatrix} 6 & 2 \\ 2 & 3 \end{bmatrix}

Then, vector [21]\begin{bmatrix} 2 \\ 1 \end{bmatrix}, when transformed by 2×22\times 2, becomes [147]\begin{bmatrix} 14 \\ 7 \end{bmatrix} and maintains the same direction. If we multiply vector [21]\begin{bmatrix} 2 \\ 1 \end{bmatrix} by λ=7\lambda = 7, the length of the vector also matches, satisfying the eigenvalue equation

Ax=λx[6223][21]=7[21] \begin{align*} A \mathbf{x} &= \lambda \mathbf{x} \\ \begin{bmatrix} 6 & 2 \\ 2 & 3 \end{bmatrix} \begin{bmatrix} 2 \\ 1 \end{bmatrix} &= 7 \begin{bmatrix} 2 \\ 1 \end{bmatrix} \end{align*}

Hence, λ=7\lambda=7 is referred to as the eigenvalue. Upon closer inspection, although many eigenvectors can be found by scaling [21]\begin{bmatrix} 2 \\ 1 \end{bmatrix}, the eigenvalue remains unchanged. Therefore, [21]\begin{bmatrix} 2 \\ 1 \end{bmatrix} is described as the eigenvector of AA corresponding to the eigenvalue 77.

By extending this geometric discussion to a general context, eigenvalues algebraically satisfy the equation Ax=λxA \mathbf{x} = \lambda \mathbf{x}, and the eigenvectors are the non-trivial solutions to the equation for the given x\mathbf{x}.

Solving the Eigenvalue Equation

To find the eigenvalues, one starts with the eigenvalue equation. Simplifying the equation (1)(1) yields:

Ax=λx    Axλx=0    AxλIx=0    (AλI)x=0 \begin{align*} && A \mathbf{x} &= \lambda \mathbf{x} \\ \implies && A \mathbf{x} - \lambda \mathbf{x} &= \mathbf{0} \\ \implies && A \mathbf{x} - \lambda I \mathbf{x} &= \mathbf{0} \\ \implies && \left( A - \lambda I \right) \mathbf{x} &= \mathbf{0} \end{align*}

Here, the eigenvector must satisfy condition x0\mathbf{x} \ne \mathbf{0}. The linear system above will have a non-zero solution if and only if the inverse of (AλI)\left( A - \lambda I \right) does not exist, which is equivalent to the following equation.

det(AλI)=0 \det (A -\lambda I) = 0

Therefore, x\mathbf{x} satisfying the above equation becomes the eigenvalue of AA. This equation is called the characteristic equation of AA. For a n×nn\times n matrix, det(AλI)\det (A -\lambda I) becomes a polynomial of degree nn, known as the characteristic polynomial.

Note that the eigenvalues of A+BA+B may differ from the sum of the eigenvalues of AA and BB, and similarly, the eigenvalues of ABAB may not match the product of the eigenvalues of AA and BB. Furthermore, as it can be seen from solving the equation, there is no guarantee that eigenvalues will always be real numbers.

Examples

Finding Eigenvalues

As an example, consider again A=[6223]A = \begin{bmatrix} 6 & 2 \\ 2 & 3 \end{bmatrix}. Since AλI=[6λ223λ]A-\lambda I = \begin{bmatrix} 6 - \lambda & 2 \\ 2 & 3 - \lambda \end{bmatrix}, solving the characteristic equation of AA yields:

det(AλI)=0    (6λ)(3λ)4=0    λ29λ+184=0    (λ2)(λ7)=0 \begin{align*} && \det (A - \lambda I) &= 0 \\ \implies && (6 - \lambda)(3 - \lambda) - 4 &= 0 \\ \implies && \lambda^2 - 9 \lambda + 18 - 4 &= 0 \\ \implies && (\lambda - 2)(\lambda - 7) &= 0 \end{align*}

Therefore, the eigenvalues of AA are λ=2\lambda = 2 and λ=7\lambda = 7. By substituting 22 and 77 for x\mathbf{x}, one can find the corresponding eigenvectors for each eigenvalue. Here, only the case for λ=7\lambda = 7 is presented.

Finding the Eigenvector Corresponding to λ=7\lambda = 7

Substituting λ=7\lambda = 7 into (1)(1) and simplifying yields:

[6223][x1x2]=7[x1x2]    [6x1+2x22x1+3x2]=[7x17x2]    [x1+2x22x14x2]=[00] \begin{align*} && \begin{bmatrix} 6 & 2 \\ 2 & 3 \end{bmatrix} \begin{bmatrix} x_{1} \\ x_{2} \end{bmatrix} &= 7\begin{bmatrix} x_{1} \\ x_{2} \end{bmatrix} \\ \implies && \begin{bmatrix} 6x_{1} + 2x_{2} \\ 2x_{1} + 3x_{2} \end{bmatrix} &= \begin{bmatrix} 7x_{1} \\ 7x_{2} \end{bmatrix} \\ \implies && \begin{bmatrix} -x_{1} + 2x_{2} \\ 2x_{1} - 4x_{2} \end{bmatrix} &= \begin{bmatrix} 0 \\ 0 \end{bmatrix} \end{align*}

Solving this results in:

{x1+2x2=02x14x2=0 \left\{ \begin{align*} -x_{1} + 2x_{2} &= 0 \\ 2x_{1} - 4x_{2} &= 0 \end{align*} \right.

    x1=2x2 \implies x_{1} = 2x_{2}

Thus, for all 00 not equal to zero, the vector [2x2x2]\begin{bmatrix} 2x_{2} \\ x_{2} \end{bmatrix} is the eigenvector corresponding to λ=7\lambda = 7. Typically, the simplest form or a unit vector with magnitude 11 is chosen. Substituting x2=1x_{2} = 1 gives the following eigenvector:

A=[21] A = \begin{bmatrix} 2 \\ 1 \end{bmatrix}

Properties

  • For a positive integer kk, if x\mathbf{x} is an eigenvalue of matrix AA and n×1n\times 1 is the corresponding eigenvector to x\mathbf{x}, then λk\lambda ^{k} is an eigenvalue of AkA^{k}, and n×1n\times 1 is the corresponding eigenvector to λk\lambda ^{k}.

  1. Howard Anton, Elementary Linear Algebra: Aplications Version (12th Edition, 2019), p291-292 ↩︎