logo

Geodesic Curvature is Intrinsic 📂Geometry

Geodesic Curvature is Intrinsic

Theorem1

The geodesic curvature κg\kappa_{g} of a curve on a surface is intrinsic.

Description

In other words, κg\kappa_{g} can be calculated solely using the coefficients of the Riemannian metric, without the unit normal n\mathbf{n}. Of course, it can also be expressed using the extrinsic formula, as κN=T=α=κnn+κgS\kappa \mathbf{N} = \mathbf{T}^{\prime} = \alpha^{\prime \prime} = \kappa_{n}\mathbf{n}+ \kappa_{g}\mathbf{S}, so

κg= T,S= T,n×T= [T,n,T]= [n,T,T]= n,T×T= n,T×κN= κn,T×N= κn,B= κcosθ \begin{align*} \kappa_{g} =&\ \left\langle \mathbf{T}^{\prime}, \mathbf{S} \right\rangle \\ =&\ \left\langle \mathbf{T}^{\prime}, \mathbf{n} \times \mathbf{T} \right\rangle \\ =&\ \left[ \mathbf{T}^{\prime}, \mathbf{n}, \mathbf{T} \right] \\ =&\ \left[ \mathbf{n}, \mathbf{T}, \mathbf{T}^{\prime} \right] \\ =&\ \left\langle \mathbf{n}, \mathbf{T} \times \mathbf{T}^{\prime} \right\rangle \\ =&\ \left\langle \mathbf{n}, \mathbf{T} \times \kappa \mathbf{N} \right\rangle \\ =&\ \kappa \left\langle \mathbf{n}, \mathbf{T} \times \mathbf{N} \right\rangle \\ =&\ \kappa \left\langle \mathbf{n}, \mathbf{B} \right\rangle \\ =&\ \kappa \cos \theta \end{align*}

Here, [,,]\left[ \cdot, \cdot, \cdot \right] signifies the scalar triple product. B\mathbf{B} is the binormal. θ\theta is the angle between n\mathbf{n} and B\mathbf{B}.

Proof

  • gijg_{ij}: Coefficients of the Riemann metric
  • Lij=xij,nL_{ij} = \left\langle \mathbf{x}_{ij}, \mathbf{n} \right\rangle: Coefficients of the second fundamental form
  • Γijk=l=12xij,xlglk=xij,xlglk\Gamma_{ij}^{k} = \sum \limits_{l=1}^{2} \left\langle \mathbf{x}_{ij}, \mathbf{x}_{l} \right\rangle g^{lk} = \left\langle \mathbf{x}_{ij}, \mathbf{x}_{l} \right\rangle g^{lk}: Christoffel symbols

Let x:UR3\mathbf{x} : U \to \mathbb{R}^{3} be the coordinate chart mapping, and the coordinates of UU be (u1,u2)(u_{1}, u_{2}). Suppose a curve α(s)=x(u1(s),u2(s))\alpha (s) = \mathbf{x}\left( u_{1}(s), u_{2}(s) \right) is given on it. Then, α\alpha^{\prime \prime} is expressed as follows.

α(s)=κn(s)n(s)+κg(s)S(s) \alpha^{\prime \prime}(s) = \kappa_{n}(s)\mathbf{n}(s) + \kappa_{g}(s)\mathbf{S}(s)

n\mathbf{n} is the unit normal, S=n×T\mathbf{S} = \mathbf{n} \times \mathbf{T}. Also, xi\mathbf{x}_{i}, xij\mathbf{x}_{ij} are respectively the first and second partial derivatives of x\mathbf{x}.

xi:=xuiandxij:=2xujui \mathbf{x}_{i} := \dfrac{\partial \mathbf{x}}{\partial u_{i}} \quad \text{and} \quad \mathbf{x}_{ij} := \dfrac{\partial^{2} \mathbf{x}}{\partial u_{j} \partial u_{i}}

  • Part 1.

    First, let’s represent the scalar triple product of unit normals and the bases of the tangent plane as follows.

    ϵij=n,xi×xj=[n,xi,xj] \epsilon _{ij} = \langle \mathbf{n}, \mathbf{x}_{i} \times \mathbf{x}_{j} \rangle = \left[ \mathbf{n}, \mathbf{x}_{i}, \mathbf{x}_{j} \right]

    Then, since xi×xi=0\mathbf{x}_{i} \times \mathbf{x}_{i} = \mathbf{0}, the values ​​are as follows.

    ϵ11=ϵ22=0 \epsilon_{11} = \epsilon_{22} = 0

    Since n\mathbf{n} is perpendicular to x1×x2\mathbf{x}_{1} \times \mathbf{x}_{2} by definition,

    n,x1×x2=nx1×x2 \langle \mathbf{n}, \mathbf{x}_{1} \times \mathbf{x}_{2} \rangle = \left| \mathbf{n} \right| \left| \mathbf{x}_{1} \times \mathbf{x}_{2} \right|

    Here, since n\mathbf{n} is a unit vector and g=x1×x22g = \left| \mathbf{x}_{1} \times \mathbf{x}_{2} \right|^{2},

    ϵ12=n,x1×x2=n,x2×x1=ϵ21=g \epsilon_{12} = \langle \mathbf{n}, \mathbf{x}_{1} \times \mathbf{x}_{2} \rangle = -\langle \mathbf{n}, \mathbf{x}_{2} \times \mathbf{x}_{1} \rangle = -\epsilon_{21} = \sqrt{g}

  • Part 2.

    Since S=n×T\mathbf{S} = \mathbf{n} \times \mathbf{T} and S\mathbf{S} are unit vectors,

    κg=kgS,S=kgS,n×T=[κgS,n,T] \kappa _{g} = \left\langle k_{g} \mathbf{S}, \mathbf{S} \right\rangle = \left\langle k_{g} \mathbf{S}, \mathbf{n} \times \mathbf{T} \right\rangle = \left[ \kappa_{g}\mathbf{S}, \mathbf{n}, \mathbf{T} \right]

    Formula

    κgS=i=12[uk+i,j=12Γijkuiuj]xk \kappa_{g}\mathbf{S} = \sum \limits_{i=1}^{2} \left[ u_{k}^{\prime \prime} + \sum \limits_{i,j=1}^{2} \Gamma_{ij}^{k}u_{i}^{\prime}u_{j}^{\prime} \right] \mathbf {x}_{k}

    The tangent vector is T=xlul\mathbf{T} = \mathbf{x}_{l}u_{l}^{\prime}, and according to the formula above, κg\kappa_{g} is calculated as follows.

    κg= kgS,n×T=[κgS,n,T]= k=12(uk+i=12j=12Γijkuiuj)xk,n×T= k=12(uk+i=12j=12Γijkuiuj)xk,n×T= k=12(uk+i=12j=12Γijkuiuj)[xk,n,T]= k=12(uk+i=12j=12Γijkuiuj)[n,T,xk]= k=12(uk+i=12j=12Γijkuiuj)[n,xlul,xk]= k=12(uk+i=12j=12Γijkuiuj)ul[n,xl,xk]= k=12(uk+i=12j=12Γijkuiuj)ulϵlk \begin{align*} \kappa_{g} =&\ \left\langle k_{g} \mathbf{S}, \mathbf{n} \times \mathbf{T} \right\rangle = \left[ \kappa_{g}\mathbf{S}, \mathbf{n}, \mathbf{T} \right] \\ =&\ \left\langle \sum \limits_{k=1}^{2} \left( u^{\prime \prime}_{k} + \sum\limits_{i=1}^{2} \sum\limits_{j=1}^{2} \Gamma_{ij}^{k} u_{i}^{\prime} u_{j}^{\prime} \right)\mathbf{x}_{k} , \mathbf{n} \times \mathbf{T} \right\rangle \\ =&\ \sum \limits_{k=1}^{2} \left( u^{\prime \prime}_{k} + \sum\limits_{i=1}^{2} \sum\limits_{j=1}^{2} \Gamma_{ij}^{k} u_{i}^{\prime} u_{j}^{\prime} \right) \left\langle \mathbf{x}_{k} , \mathbf{n} \times \mathbf{T} \right\rangle \\ =&\ \sum \limits_{k=1}^{2} \left( u^{\prime \prime}_{k} + \sum\limits_{i=1}^{2} \sum\limits_{j=1}^{2} \Gamma_{ij}^{k} u_{i}^{\prime} u_{j}^{\prime} \right) \left[\mathbf{x}_{k}, \mathbf{n}, \mathbf{T} \right] \\ =&\ \sum \limits_{k=1}^{2} \left( u^{\prime \prime}_{k} + \sum\limits_{i=1}^{2} \sum\limits_{j=1}^{2} \Gamma_{ij}^{k} u_{i}^{\prime} u_{j}^{\prime} \right) \left[\mathbf{n}, \mathbf{T}, \mathbf{x}_{k} \right] \\ =&\ \sum \limits_{k=1}^{2} \left( u^{\prime \prime}_{k} + \sum\limits_{i=1}^{2} \sum\limits_{j=1}^{2} \Gamma_{ij}^{k} u_{i}^{\prime} u_{j}^{\prime} \right) \left[\mathbf{n}, \mathbf{x}_{l}u_{l}^{\prime}, \mathbf{x}_{k} \right] \\ =&\ \sum \limits_{k=1}^{2} \left( u^{\prime \prime}_{k} + \sum\limits_{i=1}^{2} \sum\limits_{j=1}^{2} \Gamma_{ij}^{k} u_{i}^{\prime} u_{j}^{\prime} \right) u_{l}^{\prime} \left[\mathbf{n}, \mathbf{x}_{l}, \mathbf{x}_{k} \right] \\ =&\ \sum \limits_{k=1}^{2} \left( u^{\prime \prime}_{k} + \sum\limits_{i=1}^{2} \sum\limits_{j=1}^{2} \Gamma_{ij}^{k} u_{i}^{\prime} u_{j}^{\prime} \right) u_{l}^{\prime} \epsilon_{lk} \end{align*}

    Here, since Γijk\Gamma_{ij}^{k} is intrinsic and, according to Part 1., ϵlk\epsilon_{lk} is also intrinsic, κg\kappa_{g} is intrinsic.


  1. Richard S. Millman and George D. Parker, Elements of Differential Geometry (1977), p106-107 ↩︎