Gauss's Theorem in Differential Geometry
📂GeometryGauss's Theorem in Differential Geometry
정리
Let’s call x:U→R3 the coordinate patch. Let (u1,u2) be the coordinates of U.
Let n be the unit normal, Lij=⟨xij,n⟩ the coefficients of the second fundamental form, and Γijk=l=1∑2⟨xij,xl⟩glk=⟨xij,xl⟩glk the Christoffel symbols.
Then, the following are true:
(a) Gauss’s formulas:
xij=Lijn+k=1∑2Γijkxk
(b) For any unit speed curve γ(s)=x(γ1(s),γ2(s)),
κn=i=1∑2j=1∑2Lij(γi)′(γj)′
And
κgS=k=1∑2[uk′′+i,j=1∑2Γijk(γi)′(γj)′]xk
Where κn is the normal curvature, κg is the geodesic curvature, and S=n×T.
Explanation
In fact, (a) is by itself a definition of Lij and Γijk.
From the result of (a), we obtain the following equation:
⟨xij,xl⟩=k=1∑2Γijkgkl
This is called the first Christoffel symbol.
Proof
(a)
The unit normal is perpendicular to the tangent space, and since {x1,x2} is a basis of the tangent space, {n,x1,x2} becomes the basis of R3. Therefore, all vectors of R3 can be represented as a linear combination of these. Now, let’s represent xij as follows:
xij=aijn+bij1x1+bij2x2
Therefore, since ⟨xi,n⟩=0, by the definition of the coefficients of the second fundamental form,
Lij=⟨xij,n⟩=⟨aijn+bij1x1+bij2x2,n⟩=aij
Also, the coefficients of the Riemann metric are defined as follows:
⟨xij,xl⟩= ⟨aijn+bij1x1+bij2x2,xl⟩=bij1⟨x1,xl⟩+bij2⟨x2,xl⟩=bij1g1l+bij2g2l=m=1∑2bijmgml=bijmgml(Einstein notation)
Therefore, [glk] being the inverse of [gij], the following equation holds:
⟨xij,xl⟩glk=m=1∑2bijmgmlglk
Summing the left-hand side over all l gives the Christoffel symbols. Since gikgkj=δij holds for the Riemann metric,
Γijk=l=1∑2⟨xij,xl⟩glk=l=1∑2m=1∑2bijmgmlglk=m=1∑2bijmδmk=bijk
Therefore,
xij=== aijn+bij1x1+bij2x2 Lijn+Γij1x1+Γij2x2 Lijn+k=1∑2Γijkxk
■
(b)
Part 1. Calculation of γ′′
Calculating the tangent vector of γ(s)=x(γ1(s),γ2(s)) gives the following result:
T(s)====== dsdγ dsdx(γ1,γ2) ∂γ1∂xdsdγ1+∂γ2∂xdsdγ2 x1(γ1)′+x2(γ2)′ i=1∑2xi(γi)′ xi(γi)′by \href
In the last equality, Einstein notation was used. Let’s calculate the acceleration. For someone familiar with Einstein notation and differential calculus, it can be calculated in one shot as follows:
γ′′=dsd(xi(γi)′)=xij(γj)′(γi)′+xi(γi)′′=i=1∑2(j=1∑2xij(γj)′(γi)′+xi(γi)′′)
For those not familiar with Einstein notation, detailing the calculation process gives the following:
γ′′========== dsd(x1(γ1)′+x2(γ2)′) dsd(x1(γ1)′)+dsd(x2(γ2)′) dsd(x1)(γ1)′+x1dsd((γ1)′)+dsd(x2)(γ2)′+x2dsd((γ2)′) (∂γ1∂x1dsdγ1+∂γ2∂x1dsdγ2)(γ1)′+x1(γ1)′′+(∂γ1∂x2dsdγ1+∂γ2∂x2dsdγ2)(γ2)′+x2(γ2)′′ (x11(γ1)′+x12(γ2)′)(γ1)′+x1(γ1)′′+(x21(γ1)′+x22(γ2)′)(γ2)′+x2(γ2)′′ x11(γ1)′(γ1)′+x12(γ2)′(γ1)′+x1(γ1)′′+x21(γ1)′(γ2)′+x22(γ2)′(γ2)′+x2(γ2)′′ (x11(γ1)′(γ1)′+x12(γ2)′(γ1)′+x21(γ1)′(γ2)′+x22(γ2)′(γ2)′)+x1(γ1)′′+x2(γ2)′′ j=1∑2(x1j(γj)′(γ1)′+x2j(γj)′(γ2)′)+x1u1′′+x2(γ2)′′ i=1∑2(j=1∑2xij(γj)′(γi)′+xi(γi)′′) xij(γj)′(γi)′+xi(γi)′′
Part 2.
Substituting Gauss’s formulas (a) into γ′′,
γ′′(s)=i=1∑2j=1∑2xij(γi)′(γj)′+k=1∑2xk(γk)′′=i=1∑2j=1∑2(Lijn+k=1∑2Γijkxk)(γi)′(γj)′+k=1∑2xk(γk)′′=i=1∑2j=1∑2Lij(γi)′(γj)′n+k=1∑2((γk)′′+i=1∑2j=1∑2Γijk(γi)′(γj)′)xk
However, because it is expressed as γ′′=κnn+κgSin this way
κn=i=1∑2j=1∑2Lij(γi)′(γj)′
κgS=k=1∑2((γk)′′+i=1∑2j=1∑2Γijk(γi)′(γj)′)xk
■