logo

First Basic Forms, Riemannian Metrics 📂Geometry

First Basic Forms, Riemannian Metrics

Buildup

Riemannian metric is a concept that comes from the process of calculating the length of curves on a surface, and the process is as follows.

Let’s say α(t)\boldsymbol{\alpha}(t) is a regular curve moving on a simple surface x:UR3\mathbf{x} : U \to \mathbb{R}^{3}. Let’s say (u1,u2)(u_{1}, u_{2}) are the coordinates in UU. Then, α\boldsymbol{\alpha} can be expressed as follows.

α(t)=x(u1(t),u2(t)) \boldsymbol{\alpha}(t) = \mathbf{x}(u_{1}(t), u_{2}(t))

At this point, the length of α\boldsymbol{\alpha} at atba \le t \le b is defined as follows.

abdαdtdt \int_{a}^{b} \left| \dfrac{d \boldsymbol{\alpha}}{d t} \right| dt

If we resolve the integrand function, it goes as follows.

dαdt= dαdt,dαdt= dx(u1,u2)dt,dx(u1,u2)dt \begin{align*} \left| \dfrac{d \boldsymbol{\alpha}}{d t} \right| =&\ \sqrt{\left\langle \dfrac{d \boldsymbol{\alpha}}{d t} , \dfrac{d \boldsymbol{\alpha}}{d t} \right\rangle} \\ =&\ \sqrt{\left\langle \dfrac{d \mathbf{x}(u_{1}, u_{2})}{d t} , \dfrac{d \mathbf{x}(u_{1}, u_{2})}{d t} \right\rangle} \end{align*}

By the chain rule,

dαdt= xu1du1dt+xu2du2dt,xu1du1dt+xu2du2dt= x1du1dt+x2du2dt,x1du1dt+x2du2dt \begin{align*} \left| \dfrac{d \boldsymbol{\alpha}}{d t} \right| =&\ \sqrt{\left\langle \dfrac{\partial \mathbf{x}}{\partial u_{1}}\dfrac{d u_{1}}{dt} + \dfrac{\partial \mathbf{x}}{\partial u_{2}}\dfrac{d u_{2}}{dt}, \dfrac{\partial \mathbf{x}}{\partial u_{1}}\dfrac{d u_{1}}{dt} + \dfrac{\partial \mathbf{x}}{\partial u_{2}}\dfrac{d u_{2}}{dt} \right\rangle} \\ =&\ \sqrt{\left\langle \mathbf{x}_{1}\dfrac{d u_{1}}{dt} + \mathbf{x}_{2}\dfrac{d u_{2}}{dt}, \mathbf{x}_{1}\dfrac{d u_{1}}{dt} + \mathbf{x}_{2}\dfrac{d u_{2}}{dt} \right\rangle} \end{align*}

At this point, x1:=xu1,x2:=xu2\mathbf{x}_{1} := \dfrac{\partial \mathbf{x}}{\partial u_{1}}, \mathbf{x}_{2} := \dfrac{\partial \mathbf{x}}{\partial u_{2}}. Expanding and arranging the inner product,

dαdt= x1du1dt+x2du2dt,x1du1dt+x2du2dt= (du1dt)2x1,x1+du1dtdu2dtx1,x2+du2dtdu1dtx2,x1+(du2dt)2x2,x2 \begin{align*} & \left| \dfrac{d \boldsymbol{\alpha}}{d t} \right| \\ =&\ \sqrt{\left\langle \mathbf{x}_{1}\dfrac{d u_{1}}{dt} + \mathbf{x}_{2}\dfrac{d u_{2}}{dt}, \mathbf{x}_{1}\dfrac{d u_{1}}{dt} + \mathbf{x}_{2}\dfrac{d u_{2}}{dt} \right\rangle} \\ =&\ \sqrt{\left( \dfrac{d u_{1}}{dt} \right)^{2} \left\langle \mathbf{x}_{1}, \mathbf{x}_{1} \right\rangle + \dfrac{d u_{1}}{dt}\dfrac{d u_{2}}{dt} \left\langle \mathbf{x}_{1}, \mathbf{x}_{2} \right\rangle + \dfrac{d u_{2}}{dt}\dfrac{d u_{1}}{dt} \left\langle \mathbf{x}_{2}, \mathbf{x}_{1} \right\rangle + \left( \dfrac{d u_{2}}{dt} \right)^{2} \left\langle \mathbf{x}_{2}, \mathbf{x}_{2} \right\rangle} \end{align*}

Here, if we denote the dot product above by gij=xi,xjg_{ij} = \left\langle \mathbf{x}_{i}, \mathbf{x}_{j} \right\rangle, and arrange it as \sum, it can be expressed as follows.

dαdt= i=12j=12gijduidtdujdt= gijduidtdujdt \begin{align*} \left| \dfrac{d \boldsymbol{\alpha}}{d t} \right| =&\ \sqrt{ \sum \limits_{i=1}^{2}\sum \limits_{j=1}^{2} g_{ij} \dfrac{d u_{i}}{dt}\dfrac{d u_{j}}{dt}} \\ =&\ \sqrt{ g_{ij} \dfrac{d u_{i}}{dt}\dfrac{d u_{j}}{dt}} \end{align*}

In the second equality, the summation sign is omitted using Einstein notation.

Definition1

gij=xi,xjg_{ij} = \left\langle \mathbf{x}_{i}, \mathbf{x}_{j} \right\rangle is called the coefficient of the Riemannian metric, or the coefficient of the first fundamental form.

Let MM be the surface at R3\mathbb{R}^{3}, referred as pMp \in M. Let X,Y\mathbf{X}, \mathbf{Y} be the tangent vector at pp. Then, for the eigenmap x:UR3\mathbf{x} : U \to \mathbb{R}^{3} of MM, it is expressed as follows.

X=X1x1+X2x2andY=Y1x1+Y2x2 \mathbf{X} = X^{1}\mathbf{x}_{1} + X^{2}\mathbf{x}_{2} \quad \text{and} \quad \mathbf{Y} = Y^{1}\mathbf{x}_{1} + Y^{2}\mathbf{x}_{2}

The following bilinear form II is defined as the Riemannian metric of the surface x\mathbf{x}, or the first fundamental form.

I:TpM×TpMR I : T_{p}M \times T_{p}M \to \mathbb{R}

I(X,Y)=i=12j=12gijXiYj=gijXiYj=[X1X2][g11g12g21g22][Y1Y2] I (\mathbf{X}, \mathbf{Y}) = \sum \limits_{i=1}^{2} \sum \limits_{j=1}^{2} g_{ij}X^{i}Y^{j} = g_{ij}X^{i}Y^{j} = \begin{bmatrix} X^{1} & X^{2}\end{bmatrix} \begin{bmatrix} g_{11} & g_{12} \\ g_{21} & g_{22} \end{bmatrix} \begin{bmatrix} Y^{1} \\ Y^{2}\end{bmatrix}

The determinant of the matrix of coefficients [gij]\left[ g_{ij} \right] is denoted as gg.

g:=det([gij])=g11g12g21g22=g11g22g12g21 g := \det (\left[ g_{ij} \right]) = \begin{vmatrix} g_{11} & g_{12} \\ g_{21} & g_{22}\end{vmatrix} = g_{11}g_{22} - g_{12}g_{21}

The (k,l)(k,l) component of the inverse matrix of the matrix [gij]\left[ g_{ij} \right] is denoted as gklg^{kl}.

(g11g12g21g22)1= 1det[gij](g22g21g12g22)=1g(g22g21g12g22)= (g22gg21gg12gg11g)= (g11g12g21g22) \begin{align*} \begin{pmatrix} g_{11} & g_{12} \\ g_{21} & g_{22} \end{pmatrix} ^{-1} =&\ \dfrac{1}{\det \left[ g_{ij} \right]} \begin{pmatrix} g_{22} & - g_{21} \\ g_{12} & g_{22} \end{pmatrix} = \dfrac{1}{g} \begin{pmatrix} g_{22} & - g_{21} \\ g_{12} & g_{22} \end{pmatrix} \\[1em] =&\ \begin{pmatrix}\dfrac{g_{22}}{g} & - \dfrac{g_{21}}{g} \\[1em] -\dfrac{g_{12}}{g} & \dfrac{g_{11}}{g} \end{pmatrix} \\[1em] =&\ \begin{pmatrix} g^{11} & g^{12} \\[1em] g^{21} & g^{22} \end{pmatrix} \end{align*}

Explanation

These days, the term “first fundamental form” is hardly used and mostly, the term “Riemannian metric” is used. The name “metric” is used because, as seen in the buildup, it is used for measuring the length of curves on the surface.

Notations like E=g11E = g_{11}, F=g21=g12F=g_{21}=g_{12}, G=g22G=g_{22} are also widely used.

The reason the concept of Riemannian metric, which did not appear in curve theory, arises is because the basis of the tangent space {x1,x2}\left\{ \mathbf{x}_{1}, \mathbf{x}_{2} \right\} is not generally an orthonormal basis. If it were orthonormal, gij=δijg_{ij} = \delta_{ij}, therefore it would be meaningless. Here, δ\delta is the Kronecker delta. Using the Riemannian metric and Einstein notation, the length of the curve α\boldsymbol{\alpha} on the surface can be expressed as follows.

L(α)= length of α= abgijduidtdujdtdt= abgijαiαjdt= abE(du1dt)2+2Fdu1dtdu2dt+G(du2dt)2dt \begin{align*} L (\boldsymbol{\alpha}) =&\ \text{length of } \boldsymbol{\alpha} \\ =&\ \int_{a}^{b} \sqrt{ g_{ij} \dfrac{d u_{i}}{dt}\dfrac{d u_{j}}{dt}} dt \\ =&\ \int_{a}^{b} \sqrt{ g_{ij} \alpha_{i}^{\prime} \alpha_{j}^{\prime} } dt \\ =&\ \int_{a}^{b} \sqrt{ E\left( \dfrac{d u_{1}}{dt} \right)^{2} + 2F\dfrac{d u_{1}}{dt}\dfrac{d u_{2}}{dt} + G\left( \dfrac{d u_{2}}{dt} \right)^{2}} dt \end{align*}

The area of the surface is also defined by the integral of the Riemannian metric.

  • For a certain region RR on the simple surface x\mathbf{x}, let it be Q=x1(R)Q = \mathbf{x}^{-1}(R). In other words, QUR2Q \subset U \subset \R^{2}. Then, the area of RR is as follows.

area of R=Qgdu1du2=Qx1×x2du1du2=QEGF2du1du2 \text{area of } R = \iint _{Q} \sqrt{g} du_{1}du_{2} = \iint _{Q} \left| \mathbf{x}_{1} \times \mathbf{x}_{2} \right| du_{1}du_{2} = \iint _{Q} \sqrt{EG-F^{2}} du_{1}du_{2}

Properties

For a simple surface x:UR3\mathbf{x} : U \to \mathbb{R}^{3},

(a) g=x1×x22g = \left| \mathbf{x}_{1} \times \mathbf{x}_{2} \right|^{2}

(b) g11=g22gandg12=g21=g12gandg22=g11gg^{11} = \dfrac{g_{22}}{g} \quad \text{and} \quad g^{12} = g^{21} = -\dfrac{g_{12}}{g} \quad \text{and} \quad g^{22} = \dfrac{g_{11}}{g}

(c) i,j\forall i,j, k=12gikgkj=δij\sum \limits_{k=1}^{2} g_{ik}g^{kj} = {\delta_{i}}^{j}

Here, δ\delta is the Kronecker delta.

Proof

(a)

Due to the properties of the cross product and the definition of Riemannian metric, the following holds.

x1×x22= x12x22sin2θ= x12x22(1cos2θ)= x12x22(1x1x2x1x2)= x12x22(x1x2)2= g11g22g12g21= det([gij])= g \begin{align*} \left| \mathbf{x}_{1} \times \mathbf{x}_{2} \right|^{2} =&\ \left| \mathbf{x}_{1} \right|^{2} \left| \mathbf{x}_{2} \right|^{2} \sin ^{2} \theta \\ =&\ \left| \mathbf{x}_{1} \right|^{2} \left| \mathbf{x}_{2} \right|^{2}\left(1- \cos ^{2} \theta \right) \\ =&\ \left| \mathbf{x}_{1} \right|^{2} \left| \mathbf{x}_{2} \right|^{2}\left(1- \dfrac{\mathbf{x}_{1} \cdot \mathbf{x}_{2}}{\left| \mathbf{x}_{1} \right| \left| \mathbf{x}_{2} \right| } \right) \\ =&\ \left| \mathbf{x}_{1} \right|^{2} \left| \mathbf{x}_{2} \right|^{2} - \left( \mathbf{x}_{1} \cdot \mathbf{x}_{2} \right)^{2} \\ =&\ g_{11}g_{22} - g_{12}g_{21} \\ =&\ \det( [g_{ij}] ) \\ =&\ g \end{align*}

(b)

It’s according to the definition.

(c)

Since [gkl][g^{kl}] is the inverse matrix of [gij][g_{ij}], it naturally holds.

(1001)= (g11g12g21g22)(g11g12g21g22)= (g11g11+g12g21g11g12+g12g22g21g11+g22g21g21g12+g22g22) \begin{align*} \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix} =&\ \begin{pmatrix} g_{11} & g_{12} \\ g_{21} & g_{22} \end{pmatrix} \begin{pmatrix} g^{11} & g^{12} \\ g^{21} & g^{22} \end{pmatrix} \\[1em] =&\ \begin{pmatrix} g_{11}g^{11}+g_{12}g^{21} & g_{11}g^{12} + g_{12}g^{22} \\[1em] g_{21}g^{11} + g_{22}g^{21} & g_{21}g^{12} + g_{22}g^{22} \end{pmatrix} \end{align*}

See Also


  1. Richard S. Millman and George D. Parker, Elements of Differential Geometry (1977), p93-96 ↩︎