logo

Differentiation of Functions Defined on Differentiable Manifolds 📂Geometry

Differentiation of Functions Defined on Differentiable Manifolds

Theorem1

Let’s call M1n,M2mM_{1}^{n}, M_{2}^{m} and m,nm, n, respectively, m,nm, n-dimensional differentiable manifolds. Let’s say φ:M1M2\varphi : M_{1} \to M_{2} is a differentiable function. And for every point pM1p \in M_{1} and tangent vector vTpMv \in T_{p}M, choose a differentiable curve

α:(ϵ,ϵ)M1 with α(0)=p, α(0)=v\alpha : (-\epsilon, \epsilon) \to M_{1} \text{ with } \alpha (0) = p,\ \alpha^{\prime}(0)=v

Let’s set it as β=φα\beta = \varphi \circ \alpha. Then, the following mapping

dφp:TpM1Tφ(p)M2dφp(v)=β(0) d\varphi_{p} : T_{p}M_{1} \to T_{\varphi(p)}M_{2} \\[1em] d\varphi_{p}(v) = \beta^{\prime}(0)

is a linear transformation that is independent of the choice of α\alpha.

Definition

The mapping dφpd\varphi_{p}, defined as in the theorem above, is called the differential from pp to φ\varphi.

Description

It’s not the derivative, but the differential.

Since the tangent vector acts on functions defined on a differentiable manifold, the differential dφpd\varphi_{p} is a mapping from the function space to the function space. Moreover, it is clear from the conclusion of the proof that dϕpd\phi_{p} is the Jacobian for the function y1ϕx\mathbf{y}^{-1} \circ \phi \circ \mathbf{x}.

differential=Jacobian \text{differential} = \text{Jacobian}

Let’s recall the role of Jacobians. For example, suppose the integral of a function defined at R2\mathbb{R}^{2} is given as follows.

f(x,y)dxdy \int \int f(x,y) dx dy

When changing coordinates to polar coordinates (r,θ)(r,\theta), it is necessary to multiply by the determinant of the Jacobian xrxθyryθ=r\displaystyle \begin{vmatrix}\dfrac{ \partial x}{ \partial r} & \dfrac{ \partial x}{ \partial \theta} \\ \textstyle{} \\ \dfrac{ \partial y}{ \partial r} & \dfrac{ \partial y}{ \partial \theta} \end{vmatrix}=r.

f(x,y)dxdy=f(r,θ)rdrdθ \int \int f(x,y) dx dy = \int \int f(r, \theta) rdr d\theta

Therefore, the differential dϕpd\phi_{p} of ϕ:M1M2\phi : M_{1} \to M_{2} can be thought of as implementing the coordinate transformation between the differentiable manifolds M1M_{1} and M2M_{2} through their coordinate systems x,y\mathbf{x}, \mathbf{y}.

Since the Jacobian of the composition is equal to the product of the Jacobians, the following holds for ϕ:MN,ψ:NL\phi : M \to N, \psi : N \to L and pMp\in M,

d(ψϕ)p=d(ψ)ϕ(p)d(ϕ)p d(\psi \circ \phi)_{p} = d(\psi)_{\phi (p)} d(\phi)_{p}

Understanding the definition and significance of tangent vectors is crucial for comprehending the content of this document.

Proof

Let’s call the coordinate system at point pM1p \in M_{1} on M1M_{1} as x:URnM1\mathbf{x} : U \subset \mathbb{R}^{n} \to M_{1}. Let’s denote the coordinates in Rn\mathbb{R}^{n} as (r1,,rn)Rn(r_{1}, \dots, r_{n}) \in \mathbb{R}^{n}.

x(r1,,rn)=pandx1(p)=(x1(p),,xn(p)) \mathbf{x}(r_{1}, \dots, r_{n}) = p \quad \text{and} \quad \mathbf{x}^{-1}(p) = \left( x_{1}(p), \dots, x_{n}(p) \right)

And let’s call the coordinate system at point ϕ(p)M2\phi (p) \in M_{2} on M2M_{2} as y:VRmM2\mathbf{y} : V \subset \mathbb{R}^{m} \to M_{2}. Let’s denote the coordinates in Rm\mathbb{R}^{m} as (s1,,sm)Rm(s_{1}, \dots, s_{m}) \in \mathbb{R}^{m}.

y(s1,,sm)=ϕ(p)andy1(ϕ(p))=(y1(ϕ(p)),,ym(ϕ(p))) \mathbf{y}(s_{1}, \dots, s_{m}) = \phi (p) \quad \text{and} \quad \mathbf{y}^{-1}(\phi (p)) = \Big( y_{1}(\phi (p)), \dots, y_{m}(\phi (p)) \Big)

By the definition of the tangent vector, the tangent vector β(0)\beta^{\prime}(0) at the point ϕ(p)\phi (p) on M2M_{2} is as follows. For the differentiable function g:M2Rg : M_{2} \to \mathbb{R} defined on M2M_{2},

β(0)g= ddt(gβ)(0)=ddt(gyy1β)(0)= ddt((gy)(y1β))(0)= j=1m(gy)sjt=0d(y1β)jdt(0)by \href= j=1myj(0)(gy)sjt=0= j=1myj(0)gyjt=0 \begin{align*} \beta^{\prime}(0) g =&\ \dfrac{d}{dt}(g \circ \beta)(0) = \dfrac{d}{dt}(g \circ \mathbf{y} \circ \mathbf{y}^{-1} \circ \beta)(0) \\ =&\ \dfrac{d}{dt}\big( (g \circ \mathbf{y}) \circ (\mathbf{y}^{-1} \circ \beta)\big)(0) \\ =&\ \sum \limits_{j=1}^{m} \left.\dfrac{\partial (g\circ \mathbf{y})}{\partial s_{j}}\right|_{t=0} \dfrac{d (\mathbf{y}^{-1} \circ \beta)_{j}}{d t}(0) & \text{by } \href{https://freshrimpsushi.github.io/posts/chaine-rule-for-multivariable-vector-valued-funtion}{\text{chain rule}} \\ =&\ \sum \limits_{j=1}^{m} y_{j}^{\prime}(0) \left.\dfrac{\partial (g\circ \mathbf{y})}{\partial s_{j}}\right|_{t=0} \\ =&\ \sum_{j=1}^{m} y_{j}^{\prime}(0) \left.\dfrac{\partial g}{\partial y_{j}}\right|_{t=0} \end{align*}

The meaning of the operator yjt=0\left.\dfrac{\partial }{\partial y_{j}}\right|_{t=0} here is to differentiate by pulling the domain of the non-differentiable function gg defined on M2M_{2} to Rm\mathbb{R}^{m} through composition with y\mathbf{y}. Now, let’s find yjy_{j}^{\prime}.

yj=ddt(y1β)j y_{j}^{\prime} = \dfrac{d}{dt} (\mathbf{y}^{-1} \circ \beta)_{j}

As with calculating the tangent vector, let’s consider y1β\mathbf{y}^{-1} \circ \beta decomposed as follows:

y1β=y1ϕα=y1ϕxx1α \mathbf{y}^{-1} \circ \beta = \mathbf{y}^{-1} \circ \phi \circ \alpha = \mathbf{y}^{-1} \circ \phi \circ \mathbf{x} \circ \mathbf{x}^{-1} \circ \alpha

And consider the above equation as the composition of two functions, y1ϕx\mathbf{y}^{-1} \circ \phi \circ \mathbf{x} and x1α\mathbf{x}^{-1} \circ \alpha.

  • Part 1. y1ϕx\mathbf{y}^{-1} \circ \phi \circ \mathbf{x}

    Since y1ϕx:RnRm\mathbf{y}^{-1} \circ \phi \circ \mathbf{x} : \mathbb{R}^{n} \to \mathbb{R}^{m},

    y1(ϕ(x(r1,,rn)))=(y1(ϕ(x(r1,,rn))),,ym(ϕ(x(r1,,rn)))) \begin{equation} \mathbf{y}^{-1}\left( \phi (\mathbf{x}(r_{1}, \dots, r_{n})) \right) = \left( y_{1}(\phi (\mathbf{x}(r_{1}, \dots, r_{n}))), \dots, y_{m}(\phi (\mathbf{x}(r_{1}, \dots, r_{n}))) \right) \end{equation}

    Simplified, this becomes

    y1ϕx(r1,,rn)=(y1,,ym) \mathbf{y}^{-1} \circ \phi \circ \mathbf{x} (r_{1}, \dots, r_{n}) = \left( y_{1}, \dots, y_{m}\right)

    Here yjy_{j} are technically functions concerning ϕ(x(r1,,rn))\phi (\mathbf{x}(r_{1}, \dots, r_{n})) as in (1)(1), but for simplicity, let’s denote them as functions concerning (r1,,rn)(r_{1}, \dots, r_{n}).

    yj=yj(r1,,rn),1jm y_{j} = y_{j}(r_{1}, \dots, r_{n}),\quad 1\le j \le m

  • Part 2. x1α\mathbf{x}^{-1} \circ \alpha

    Since x1α:RRn\mathbf{x}^{-1} \circ \alpha : \mathbb{R} \to \mathbb{R}^{n},

    x1(α(t))=(xi(α(t)),,xn(α(t))) \mathbf{x}^{-1} (\alpha (t)) = \left( x_{i}(\alpha (t)), \dots, x_{n}(\alpha (t)) \right)

    Here again, for simplicity, each xix_{i} is denoted as if they are functions concerning tt.

    xα(t)=(xi(t),,xn(t)) \mathbf{x} \circ \alpha (t) = ( x_{i}(t), \dots, x_{n}(t) )

Now, (y1ϕx)(x1α)(\mathbf{y}^{-1} \circ \phi \circ \mathbf{x}) \circ (\mathbf{x}^{-1} \circ \alpha) is the composition of the function that is RRn\mathbb{R} \to \mathbb{R}^{n} and the function that is RnRm\mathbb{R}^{n} \to \mathbb{R}^{m}, so by the chain rule, we obtain the following.

ddt(y1β)(0)= ddt(y1ϕx)(x1α)(0)= [i=1n(y1ϕx)1xit=0d(x1α)idt(0)i=1n(y1ϕx)mxit=0d(x1α)idt(0)]= [i=1ny1xit=0dxidt(0)i=1nymxit=0dxidt(0)]= [i=1ny1xixi(0)i=1nymxixi(0)] \begin{align*} \dfrac{d}{dt} (\mathbf{y}^{-1} \circ \beta)(0) =&\ \dfrac{d}{dt}(\mathbf{y}^{-1} \circ \phi \circ \mathbf{x}) \circ (\mathbf{x}^{-1} \circ \alpha)(0) \\ =&\ \begin{bmatrix} \sum \limits_{i=1}^{n} \left.\dfrac{\partial (\mathbf{y}^{-1} \circ \phi \circ \mathbf{x})_{1}}{\partial x_{i}}\right|_{t=0} \dfrac{d (\mathbf{x}^{-1} \circ \alpha)_{i}}{d t}(0) \\ \vdots \\ \sum \limits_{i=1}^{n} \left.\dfrac{\partial (\mathbf{y}^{-1} \circ \phi \circ \mathbf{x})_{m}}{\partial x_{i}}\right|_{t=0} \dfrac{d (\mathbf{x}^{-1} \circ \alpha)_{i}}{d t}(0) \end{bmatrix} \\ =&\ \begin{bmatrix} \sum \limits_{i=1}^{n} \left.\dfrac{\partial y_{1}}{\partial x_{i}}\right|_{t=0} \dfrac{d x_{i}}{d t}(0) \\ \vdots \\ \sum \limits_{i=1}^{n} \left.\dfrac{\partial y_{m}}{\partial x_{i}}\right|_{t=0} \dfrac{d x_{i}}{d t}(0) \end{bmatrix} \\ =&\ \begin{bmatrix} \sum \limits_{i=1}^{n} \dfrac{\partial y_{1}}{\partial x_{i}} x_{i}^{\prime}(0) \\ \vdots \\ \sum \limits_{i=1}^{n} \dfrac{\partial y_{m}}{\partial x_{i}} x_{i}^{\prime}(0) \end{bmatrix} \end{align*}

Therefore,

yj(0)=ddt(y1β)j(0)=i=1nyjxixi(0),1jm y_{j}^{\prime}(0) = \dfrac{d}{dt} (\mathbf{y}^{-1} \circ \beta)_{j}(0) = \sum \limits_{i=1}^{n} \dfrac{\partial y_{j}}{\partial x_{i}} x_{i}^{\prime}(0),\quad 1\le j \le m

Thus, if we express β(0)\beta^{\prime}(0) as a coordinate vector against the basis {yjt=0}\left\{ \left.\dfrac{\partial }{\partial y_{j}}\right|_{t=0} \right\}, it is as follows.

β(0)=j=1myj(0)yjt=0=[y1(0)ym(0)]=[i=1ny1xixi(0)i=1nymxixi(0)] \beta^{\prime}(0) = \sum_{j=1}^{m} y_{j}^{\prime}(0) \left.\dfrac{\partial}{\partial y_{j}}\right|_{t=0} = \begin{bmatrix} y_{1}^{\prime}(0) \\ \vdots \\ y_{m}^{\prime}(0) \end{bmatrix} = \begin{bmatrix} \sum \limits_{i=1}^{n} \dfrac{\partial y_{1}}{\partial x_{i}} x_{i}^{\prime}(0)\\ \vdots \\ \sum \limits_{i=1}^{n} \dfrac{\partial y_{m}}{\partial x_{i}} x_{i}^{\prime}(0) \end{bmatrix}

Therefore, it can be seen that β(0)\beta^{\prime}(0) does not depend on α\alpha.

Meanwhile, the following is true for α(0)=v\alpha^{\prime}(0) = v.

v=α(0)=i=1nxi(0)xit=0=[x1(0)xn(0)] v = \alpha^{\prime}(0) = \sum \limits_{i=1}^{n}x_{i}^{\prime}(0) \left.\dfrac{\partial }{\partial x_{i}}\right|_{t=0} = \begin{bmatrix} x_{1}^{\prime}(0) \\ \vdots \\ x_{n}^{\prime}(0) \end{bmatrix}

Thus, organizing β(0)=dϕp(v)\beta^{\prime}(0) = d\phi_{p}(v) results in the following.

β(0)= [i=1ny1xixi(0)i=1nymxixi(0)]= [y1x1y1x2y1xny2x1y2x2y2xnymx1ymx2ymxn][x1(0)xn(0)]= [y1x1y1x2y1xny2x1y2x2y2xnymx1ymx2ymxn]v \begin{align*} \beta^{\prime}(0) =&\ \begin{bmatrix} \sum \limits_{i=1}^{n} \dfrac{\partial y_{1}}{\partial x_{i}} x_{i}^{\prime}(0)\\ \vdots \\ \sum \limits_{i=1}^{n} \dfrac{\partial y_{m}}{\partial x_{i}} x_{i}^{\prime}(0) \end{bmatrix} \\ =&\ \begin{bmatrix} \dfrac{\partial y_{1}}{\partial x_{1}} & \dfrac{\partial y_{1}}{\partial x_{2}} & \dots & \dfrac{\partial y_{1}}{\partial x_{n}} \\[1em] \dfrac{\partial y_{2}}{\partial x_{1}} & \dfrac{\partial y_{2}}{\partial x_{2}} & \dots & \dfrac{\partial y_{2}}{\partial x_{n}} \\[1ex] \vdots & \vdots & \ddots & \vdots \\[1ex] \dfrac{\partial y_{m}}{\partial x_{1}} & \dfrac{\partial y_{m}}{\partial x_{2}} & \dots & \dfrac{\partial y_{m}}{\partial x_{n}} \end{bmatrix} \begin{bmatrix} x_{1}^{\prime}(0) \\ \vdots \\ x_{n}^{\prime}(0) \end{bmatrix} \\ =&\ \begin{bmatrix} \dfrac{\partial y_{1}}{\partial x_{1}} & \dfrac{\partial y_{1}}{\partial x_{2}} & \dots & \dfrac{\partial y_{1}}{\partial x_{n}} \\[1em] \dfrac{\partial y_{2}}{\partial x_{1}} & \dfrac{\partial y_{2}}{\partial x_{2}} & \dots & \dfrac{\partial y_{2}}{\partial x_{n}} \\[1ex] \vdots & \vdots & \ddots & \vdots \\[1ex] \dfrac{\partial y_{m}}{\partial x_{1}} & \dfrac{\partial y_{m}}{\partial x_{2}} & \dots & \dfrac{\partial y_{m}}{\partial x_{n}} \end{bmatrix} v \end{align*}

Therefore, dpϕd_{p}\phi is a linear transformation represented by the following matrix.

dpϕ=[y1x1y1x2y1xny2x1y2x2y2xnymx1ymx2ymxn] d_{p}\phi = \begin{bmatrix} \dfrac{\partial y_{1}}{\partial x_{1}} & \dfrac{\partial y_{1}}{\partial x_{2}} & \dots & \dfrac{\partial y_{1}}{\partial x_{n}} \\[1em] \dfrac{\partial y_{2}}{\partial x_{1}} & \dfrac{\partial y_{2}}{\partial x_{2}} & \dots & \dfrac{\partial y_{2}}{\partial x_{n}} \\[1ex] \vdots & \vdots & \ddots & \vdots \\[1ex] \dfrac{\partial y_{m}}{\partial x_{1}} & \dfrac{\partial y_{m}}{\partial x_{2}} & \dots & \dfrac{\partial y_{m}}{\partial x_{n}} \end{bmatrix}

This is also the Jacobian of the function y1ϕx\mathbf{y}^{-1} \circ \phi \circ \mathbf{x}.

dϕp=Jacobian of y1ϕx=(y1,,ym)(x1,,xn) d\phi_{p} = \text{Jacobian of } \mathbf{y}^{-1} \circ \phi \circ \mathbf{x} = \dfrac{\partial (y_{1}, \dots, y_{m})}{\partial (x_{1}, \dots, x_{n})}


  1. Manfredo P. Do Carmo, Riemannian Geometry (Eng Edition, 1992), p9-10 ↩︎