Differentiation of Functions Defined on Differentiable Manifolds
📂Geometry Differentiation of Functions Defined on Differentiable Manifolds Theorem Let’s call M 1 n , M 2 m M_{1}^{n}, M_{2}^{m} M 1 n , M 2 m and m , n m, n m , n , respectively, m , n m, n m , n -dimensional differentiable manifolds . Let’s say φ : M 1 → M 2 \varphi : M_{1} \to M_{2} φ : M 1 → M 2 is a differentiable function . And for every point p ∈ M 1 p \in M_{1} p ∈ M 1 and tangent vector v ∈ T p M v \in T_{p}M v ∈ T p M , choose a differentiable curve
α : ( − ϵ , ϵ ) → M 1 with α ( 0 ) = p , α ′ ( 0 ) = v \alpha : (-\epsilon, \epsilon) \to M_{1} \text{ with } \alpha (0) = p,\ \alpha^{\prime}(0)=v α : ( − ϵ , ϵ ) → M 1 with α ( 0 ) = p , α ′ ( 0 ) = v
Let’s set it as β = φ ∘ α \beta = \varphi \circ \alpha β = φ ∘ α . Then, the following mapping
d φ p : T p M 1 → T φ ( p ) M 2 d φ p ( v ) = β ′ ( 0 )
d\varphi_{p} : T_{p}M_{1} \to T_{\varphi(p)}M_{2}
\\[1em] d\varphi_{p}(v) = \beta^{\prime}(0)
d φ p : T p M 1 → T φ ( p ) M 2 d φ p ( v ) = β ′ ( 0 )
is a linear transformation that is independent of the choice of α \alpha α .
Definition The mapping d φ p d\varphi_{p} d φ p , defined as in the theorem above, is called the differential from p p p to φ \varphi φ .
Description It’s not the derivative, but the differential.
Since the tangent vector acts on functions defined on a differentiable manifold, the differential d φ p d\varphi_{p} d φ p is a mapping from the function space to the function space. Moreover, it is clear from the conclusion of the proof that d ϕ p d\phi_{p} d ϕ p is the Jacobian for the function y − 1 ∘ ϕ ∘ x \mathbf{y}^{-1} \circ \phi \circ \mathbf{x} y − 1 ∘ ϕ ∘ x .
differential = Jacobian
\text{differential} = \text{Jacobian}
differential = Jacobian
Let’s recall the role of Jacobians. For example, suppose the integral of a function defined at R 2 \mathbb{R}^{2} R 2 is given as follows.
∫ ∫ f ( x , y ) d x d y
\int \int f(x,y) dx dy
∫∫ f ( x , y ) d x d y
When changing coordinates to polar coordinates ( r , θ ) (r,\theta) ( r , θ ) , it is necessary to multiply by the determinant of the Jacobian ∣ ∂ x ∂ r ∂ x ∂ θ ∂ y ∂ r ∂ y ∂ θ ∣ = r \displaystyle \begin{vmatrix}\dfrac{ \partial x}{ \partial r} & \dfrac{ \partial x}{ \partial \theta} \\ \textstyle{} \\ \dfrac{ \partial y}{ \partial r} & \dfrac{ \partial y}{ \partial \theta} \end{vmatrix}=r ∂ r ∂ x ∂ r ∂ y ∂ θ ∂ x ∂ θ ∂ y = r .
∫ ∫ f ( x , y ) d x d y = ∫ ∫ f ( r , θ ) r d r d θ
\int \int f(x,y) dx dy = \int \int f(r, \theta) rdr d\theta
∫∫ f ( x , y ) d x d y = ∫∫ f ( r , θ ) r d r d θ
Therefore, the differential d ϕ p d\phi_{p} d ϕ p of ϕ : M 1 → M 2 \phi : M_{1} \to M_{2} ϕ : M 1 → M 2 can be thought of as implementing the coordinate transformation between the differentiable manifolds M 1 M_{1} M 1 and M 2 M_{2} M 2 through their coordinate systems x , y \mathbf{x}, \mathbf{y} x , y .
Since the Jacobian of the composition is equal to the product of the Jacobians , the following holds for ϕ : M → N , ψ : N → L \phi : M \to N, \psi : N \to L ϕ : M → N , ψ : N → L and p ∈ M p\in M p ∈ M ,
d ( ψ ∘ ϕ ) p = d ( ψ ) ϕ ( p ) d ( ϕ ) p
d(\psi \circ \phi)_{p} = d(\psi)_{\phi (p)} d(\phi)_{p}
d ( ψ ∘ ϕ ) p = d ( ψ ) ϕ ( p ) d ( ϕ ) p
Understanding the definition and significance of tangent vectors is crucial for comprehending the content of this document.
Proof Let’s call the coordinate system at point p ∈ M 1 p \in M_{1} p ∈ M 1 on M 1 M_{1} M 1 as x : U ⊂ R n → M 1 \mathbf{x} : U \subset \mathbb{R}^{n} \to M_{1} x : U ⊂ R n → M 1 . Let’s denote the coordinates in R n \mathbb{R}^{n} R n as ( r 1 , … , r n ) ∈ R n (r_{1}, \dots, r_{n}) \in \mathbb{R}^{n} ( r 1 , … , r n ) ∈ R n .
x ( r 1 , … , r n ) = p and x − 1 ( p ) = ( x 1 ( p ) , … , x n ( p ) )
\mathbf{x}(r_{1}, \dots, r_{n}) = p \quad \text{and} \quad \mathbf{x}^{-1}(p) = \left( x_{1}(p), \dots, x_{n}(p) \right)
x ( r 1 , … , r n ) = p and x − 1 ( p ) = ( x 1 ( p ) , … , x n ( p ) )
And let’s call the coordinate system at point ϕ ( p ) ∈ M 2 \phi (p) \in M_{2} ϕ ( p ) ∈ M 2 on M 2 M_{2} M 2 as y : V ⊂ R m → M 2 \mathbf{y} : V \subset \mathbb{R}^{m} \to M_{2} y : V ⊂ R m → M 2 . Let’s denote the coordinates in R m \mathbb{R}^{m} R m as ( s 1 , … , s m ) ∈ R m (s_{1}, \dots, s_{m}) \in \mathbb{R}^{m} ( s 1 , … , s m ) ∈ R m .
y ( s 1 , … , s m ) = ϕ ( p ) and y − 1 ( ϕ ( p ) ) = ( y 1 ( ϕ ( p ) ) , … , y m ( ϕ ( p ) ) )
\mathbf{y}(s_{1}, \dots, s_{m}) = \phi (p) \quad \text{and} \quad \mathbf{y}^{-1}(\phi (p)) = \Big( y_{1}(\phi (p)), \dots, y_{m}(\phi (p)) \Big)
y ( s 1 , … , s m ) = ϕ ( p ) and y − 1 ( ϕ ( p )) = ( y 1 ( ϕ ( p )) , … , y m ( ϕ ( p )) )
By the definition of the tangent vector, the tangent vector β ′ ( 0 ) \beta^{\prime}(0) β ′ ( 0 ) at the point ϕ ( p ) \phi (p) ϕ ( p ) on M 2 M_{2} M 2 is as follows. For the differentiable function g : M 2 → R g : M_{2} \to \mathbb{R} g : M 2 → R defined on M 2 M_{2} M 2 ,
β ′ ( 0 ) g = d d t ( g ∘ β ) ( 0 ) = d d t ( g ∘ y ∘ y − 1 ∘ β ) ( 0 ) = d d t ( ( g ∘ y ) ∘ ( y − 1 ∘ β ) ) ( 0 ) = ∑ j = 1 m ∂ ( g ∘ y ) ∂ s j ∣ t = 0 d ( y − 1 ∘ β ) j d t ( 0 ) by \href = ∑ j = 1 m y j ′ ( 0 ) ∂ ( g ∘ y ) ∂ s j ∣ t = 0 = ∑ j = 1 m y j ′ ( 0 ) ∂ g ∂ y j ∣ t = 0
\begin{align*}
\beta^{\prime}(0) g =&\ \dfrac{d}{dt}(g \circ \beta)(0) = \dfrac{d}{dt}(g \circ \mathbf{y} \circ \mathbf{y}^{-1} \circ \beta)(0)
\\ =&\ \dfrac{d}{dt}\big( (g \circ \mathbf{y}) \circ (\mathbf{y}^{-1} \circ \beta)\big)(0)
\\ =&\ \sum \limits_{j=1}^{m} \left.\dfrac{\partial (g\circ \mathbf{y})}{\partial s_{j}}\right|_{t=0} \dfrac{d (\mathbf{y}^{-1} \circ \beta)_{j}}{d t}(0) & \text{by } \href{https://freshrimpsushi.github.io/posts/chaine-rule-for-multivariable-vector-valued-funtion}{\text{chain rule}}
\\ =&\ \sum \limits_{j=1}^{m} y_{j}^{\prime}(0) \left.\dfrac{\partial (g\circ \mathbf{y})}{\partial s_{j}}\right|_{t=0}
\\ =&\ \sum_{j=1}^{m} y_{j}^{\prime}(0) \left.\dfrac{\partial g}{\partial y_{j}}\right|_{t=0}
\end{align*}
β ′ ( 0 ) g = = = = = d t d ( g ∘ β ) ( 0 ) = d t d ( g ∘ y ∘ y − 1 ∘ β ) ( 0 ) d t d ( ( g ∘ y ) ∘ ( y − 1 ∘ β ) ) ( 0 ) j = 1 ∑ m ∂ s j ∂ ( g ∘ y ) t = 0 d t d ( y − 1 ∘ β ) j ( 0 ) j = 1 ∑ m y j ′ ( 0 ) ∂ s j ∂ ( g ∘ y ) t = 0 j = 1 ∑ m y j ′ ( 0 ) ∂ y j ∂ g t = 0 by \href
The meaning of the operator ∂ ∂ y j ∣ t = 0 \left.\dfrac{\partial }{\partial y_{j}}\right|_{t=0} ∂ y j ∂ t = 0 here is to differentiate by pulling the domain of the non-differentiable function g g g defined on M 2 M_{2} M 2 to R m \mathbb{R}^{m} R m through composition with y \mathbf{y} y . Now, let’s find y j ′ y_{j}^{\prime} y j ′ .
y j ′ = d d t ( y − 1 ∘ β ) j
y_{j}^{\prime} = \dfrac{d}{dt} (\mathbf{y}^{-1} \circ \beta)_{j}
y j ′ = d t d ( y − 1 ∘ β ) j
As with calculating the tangent vector , let’s consider y − 1 ∘ β \mathbf{y}^{-1} \circ \beta y − 1 ∘ β decomposed as follows:
y − 1 ∘ β = y − 1 ∘ ϕ ∘ α = y − 1 ∘ ϕ ∘ x ∘ x − 1 ∘ α
\mathbf{y}^{-1} \circ \beta = \mathbf{y}^{-1} \circ \phi \circ \alpha = \mathbf{y}^{-1} \circ \phi \circ \mathbf{x} \circ \mathbf{x}^{-1} \circ \alpha
y − 1 ∘ β = y − 1 ∘ ϕ ∘ α = y − 1 ∘ ϕ ∘ x ∘ x − 1 ∘ α
And consider the above equation as the composition of two functions, y − 1 ∘ ϕ ∘ x \mathbf{y}^{-1} \circ \phi \circ \mathbf{x} y − 1 ∘ ϕ ∘ x and x − 1 ∘ α \mathbf{x}^{-1} \circ \alpha x − 1 ∘ α .
Part 1. y − 1 ∘ ϕ ∘ x \mathbf{y}^{-1} \circ \phi \circ \mathbf{x} y − 1 ∘ ϕ ∘ x
Since y − 1 ∘ ϕ ∘ x : R n → R m \mathbf{y}^{-1} \circ \phi \circ \mathbf{x} : \mathbb{R}^{n} \to \mathbb{R}^{m} y − 1 ∘ ϕ ∘ x : R n → R m ,
y − 1 ( ϕ ( x ( r 1 , … , r n ) ) ) = ( y 1 ( ϕ ( x ( r 1 , … , r n ) ) ) , … , y m ( ϕ ( x ( r 1 , … , r n ) ) ) )
\begin{equation}
\mathbf{y}^{-1}\left( \phi (\mathbf{x}(r_{1}, \dots, r_{n})) \right) = \left( y_{1}(\phi (\mathbf{x}(r_{1}, \dots, r_{n}))), \dots, y_{m}(\phi (\mathbf{x}(r_{1}, \dots, r_{n}))) \right)
\end{equation}
y − 1 ( ϕ ( x ( r 1 , … , r n )) ) = ( y 1 ( ϕ ( x ( r 1 , … , r n ))) , … , y m ( ϕ ( x ( r 1 , … , r n ))) )
Simplified, this becomes
y − 1 ∘ ϕ ∘ x ( r 1 , … , r n ) = ( y 1 , … , y m )
\mathbf{y}^{-1} \circ \phi \circ \mathbf{x} (r_{1}, \dots, r_{n}) = \left( y_{1}, \dots, y_{m}\right)
y − 1 ∘ ϕ ∘ x ( r 1 , … , r n ) = ( y 1 , … , y m )
Here y j y_{j} y j are technically functions concerning ϕ ( x ( r 1 , … , r n ) ) \phi (\mathbf{x}(r_{1}, \dots, r_{n})) ϕ ( x ( r 1 , … , r n )) as in ( 1 ) (1) ( 1 ) , but for simplicity, let’s denote them as functions concerning ( r 1 , … , r n ) (r_{1}, \dots, r_{n}) ( r 1 , … , r n ) .
y j = y j ( r 1 , … , r n ) , 1 ≤ j ≤ m
y_{j} = y_{j}(r_{1}, \dots, r_{n}),\quad 1\le j \le m
y j = y j ( r 1 , … , r n ) , 1 ≤ j ≤ m
Part 2. x − 1 ∘ α \mathbf{x}^{-1} \circ \alpha x − 1 ∘ α
Since x − 1 ∘ α : R → R n \mathbf{x}^{-1} \circ \alpha : \mathbb{R} \to \mathbb{R}^{n} x − 1 ∘ α : R → R n ,
x − 1 ( α ( t ) ) = ( x i ( α ( t ) ) , … , x n ( α ( t ) ) )
\mathbf{x}^{-1} (\alpha (t)) = \left( x_{i}(\alpha (t)), \dots, x_{n}(\alpha (t)) \right)
x − 1 ( α ( t )) = ( x i ( α ( t )) , … , x n ( α ( t )) )
Here again, for simplicity, each x i x_{i} x i is denoted as if they are functions concerning t t t .
x ∘ α ( t ) = ( x i ( t ) , … , x n ( t ) )
\mathbf{x} \circ \alpha (t) = ( x_{i}(t), \dots, x_{n}(t) )
x ∘ α ( t ) = ( x i ( t ) , … , x n ( t ))
Now, ( y − 1 ∘ ϕ ∘ x ) ∘ ( x − 1 ∘ α ) (\mathbf{y}^{-1} \circ \phi \circ \mathbf{x}) \circ (\mathbf{x}^{-1} \circ \alpha) ( y − 1 ∘ ϕ ∘ x ) ∘ ( x − 1 ∘ α ) is the composition of the function that is R → R n \mathbb{R} \to \mathbb{R}^{n} R → R n and the function that is R n → R m \mathbb{R}^{n} \to \mathbb{R}^{m} R n → R m , so by the chain rule , we obtain the following.
d d t ( y − 1 ∘ β ) ( 0 ) = d d t ( y − 1 ∘ ϕ ∘ x ) ∘ ( x − 1 ∘ α ) ( 0 ) = [ ∑ i = 1 n ∂ ( y − 1 ∘ ϕ ∘ x ) 1 ∂ x i ∣ t = 0 d ( x − 1 ∘ α ) i d t ( 0 ) ⋮ ∑ i = 1 n ∂ ( y − 1 ∘ ϕ ∘ x ) m ∂ x i ∣ t = 0 d ( x − 1 ∘ α ) i d t ( 0 ) ] = [ ∑ i = 1 n ∂ y 1 ∂ x i ∣ t = 0 d x i d t ( 0 ) ⋮ ∑ i = 1 n ∂ y m ∂ x i ∣ t = 0 d x i d t ( 0 ) ] = [ ∑ i = 1 n ∂ y 1 ∂ x i x i ′ ( 0 ) ⋮ ∑ i = 1 n ∂ y m ∂ x i x i ′ ( 0 ) ]
\begin{align*}
\dfrac{d}{dt} (\mathbf{y}^{-1} \circ \beta)(0) =&\ \dfrac{d}{dt}(\mathbf{y}^{-1} \circ \phi \circ \mathbf{x}) \circ (\mathbf{x}^{-1} \circ \alpha)(0)
\\ =&\ \begin{bmatrix}
\sum \limits_{i=1}^{n} \left.\dfrac{\partial (\mathbf{y}^{-1} \circ \phi \circ \mathbf{x})_{1}}{\partial x_{i}}\right|_{t=0} \dfrac{d (\mathbf{x}^{-1} \circ \alpha)_{i}}{d t}(0)
\\ \vdots
\\ \sum \limits_{i=1}^{n} \left.\dfrac{\partial (\mathbf{y}^{-1} \circ \phi \circ \mathbf{x})_{m}}{\partial x_{i}}\right|_{t=0} \dfrac{d (\mathbf{x}^{-1} \circ \alpha)_{i}}{d t}(0)
\end{bmatrix}
\\ =&\ \begin{bmatrix}
\sum \limits_{i=1}^{n} \left.\dfrac{\partial y_{1}}{\partial x_{i}}\right|_{t=0} \dfrac{d x_{i}}{d t}(0)
\\ \vdots
\\ \sum \limits_{i=1}^{n} \left.\dfrac{\partial y_{m}}{\partial x_{i}}\right|_{t=0} \dfrac{d x_{i}}{d t}(0)
\end{bmatrix}
\\ =&\ \begin{bmatrix}
\sum \limits_{i=1}^{n} \dfrac{\partial y_{1}}{\partial x_{i}} x_{i}^{\prime}(0)
\\ \vdots
\\ \sum \limits_{i=1}^{n} \dfrac{\partial y_{m}}{\partial x_{i}} x_{i}^{\prime}(0)
\end{bmatrix}
\end{align*}
d t d ( y − 1 ∘ β ) ( 0 ) = = = = d t d ( y − 1 ∘ ϕ ∘ x ) ∘ ( x − 1 ∘ α ) ( 0 ) i = 1 ∑ n ∂ x i ∂ ( y − 1 ∘ ϕ ∘ x ) 1 t = 0 d t d ( x − 1 ∘ α ) i ( 0 ) ⋮ i = 1 ∑ n ∂ x i ∂ ( y − 1 ∘ ϕ ∘ x ) m t = 0 d t d ( x − 1 ∘ α ) i ( 0 ) i = 1 ∑ n ∂ x i ∂ y 1 t = 0 d t d x i ( 0 ) ⋮ i = 1 ∑ n ∂ x i ∂ y m t = 0 d t d x i ( 0 ) i = 1 ∑ n ∂ x i ∂ y 1 x i ′ ( 0 ) ⋮ i = 1 ∑ n ∂ x i ∂ y m x i ′ ( 0 )
Therefore,
y j ′ ( 0 ) = d d t ( y − 1 ∘ β ) j ( 0 ) = ∑ i = 1 n ∂ y j ∂ x i x i ′ ( 0 ) , 1 ≤ j ≤ m
y_{j}^{\prime}(0) = \dfrac{d}{dt} (\mathbf{y}^{-1} \circ \beta)_{j}(0) = \sum \limits_{i=1}^{n} \dfrac{\partial y_{j}}{\partial x_{i}} x_{i}^{\prime}(0),\quad 1\le j \le m
y j ′ ( 0 ) = d t d ( y − 1 ∘ β ) j ( 0 ) = i = 1 ∑ n ∂ x i ∂ y j x i ′ ( 0 ) , 1 ≤ j ≤ m
Thus, if we express β ′ ( 0 ) \beta^{\prime}(0) β ′ ( 0 ) as a coordinate vector against the basis { ∂ ∂ y j ∣ t = 0 } \left\{ \left.\dfrac{\partial }{\partial y_{j}}\right|_{t=0} \right\} { ∂ y j ∂ t = 0 } , it is as follows.
β ′ ( 0 ) = ∑ j = 1 m y j ′ ( 0 ) ∂ ∂ y j ∣ t = 0 = [ y 1 ′ ( 0 ) ⋮ y m ′ ( 0 ) ] = [ ∑ i = 1 n ∂ y 1 ∂ x i x i ′ ( 0 ) ⋮ ∑ i = 1 n ∂ y m ∂ x i x i ′ ( 0 ) ]
\beta^{\prime}(0) = \sum_{j=1}^{m} y_{j}^{\prime}(0) \left.\dfrac{\partial}{\partial y_{j}}\right|_{t=0} = \begin{bmatrix} y_{1}^{\prime}(0) \\ \vdots \\ y_{m}^{\prime}(0) \end{bmatrix}
= \begin{bmatrix}
\sum \limits_{i=1}^{n} \dfrac{\partial y_{1}}{\partial x_{i}} x_{i}^{\prime}(0)\\ \vdots \\ \sum \limits_{i=1}^{n} \dfrac{\partial y_{m}}{\partial x_{i}} x_{i}^{\prime}(0)
\end{bmatrix}
β ′ ( 0 ) = j = 1 ∑ m y j ′ ( 0 ) ∂ y j ∂ t = 0 = y 1 ′ ( 0 ) ⋮ y m ′ ( 0 ) = i = 1 ∑ n ∂ x i ∂ y 1 x i ′ ( 0 ) ⋮ i = 1 ∑ n ∂ x i ∂ y m x i ′ ( 0 )
Therefore, it can be seen that β ′ ( 0 ) \beta^{\prime}(0) β ′ ( 0 ) does not depend on α \alpha α .
Meanwhile, the following is true for α ′ ( 0 ) = v \alpha^{\prime}(0) = v α ′ ( 0 ) = v .
v = α ′ ( 0 ) = ∑ i = 1 n x i ′ ( 0 ) ∂ ∂ x i ∣ t = 0 = [ x 1 ′ ( 0 ) ⋮ x n ′ ( 0 ) ]
v = \alpha^{\prime}(0) = \sum \limits_{i=1}^{n}x_{i}^{\prime}(0) \left.\dfrac{\partial }{\partial x_{i}}\right|_{t=0} = \begin{bmatrix}
x_{1}^{\prime}(0) \\ \vdots \\ x_{n}^{\prime}(0)
\end{bmatrix}
v = α ′ ( 0 ) = i = 1 ∑ n x i ′ ( 0 ) ∂ x i ∂ t = 0 = x 1 ′ ( 0 ) ⋮ x n ′ ( 0 )
Thus, organizing β ′ ( 0 ) = d ϕ p ( v ) \beta^{\prime}(0) = d\phi_{p}(v) β ′ ( 0 ) = d ϕ p ( v ) results in the following.
β ′ ( 0 ) = [ ∑ i = 1 n ∂ y 1 ∂ x i x i ′ ( 0 ) ⋮ ∑ i = 1 n ∂ y m ∂ x i x i ′ ( 0 ) ] = [ ∂ y 1 ∂ x 1 ∂ y 1 ∂ x 2 … ∂ y 1 ∂ x n ∂ y 2 ∂ x 1 ∂ y 2 ∂ x 2 … ∂ y 2 ∂ x n ⋮ ⋮ ⋱ ⋮ ∂ y m ∂ x 1 ∂ y m ∂ x 2 … ∂ y m ∂ x n ] [ x 1 ′ ( 0 ) ⋮ x n ′ ( 0 ) ] = [ ∂ y 1 ∂ x 1 ∂ y 1 ∂ x 2 … ∂ y 1 ∂ x n ∂ y 2 ∂ x 1 ∂ y 2 ∂ x 2 … ∂ y 2 ∂ x n ⋮ ⋮ ⋱ ⋮ ∂ y m ∂ x 1 ∂ y m ∂ x 2 … ∂ y m ∂ x n ] v
\begin{align*}
\beta^{\prime}(0) =&\ \begin{bmatrix}
\sum \limits_{i=1}^{n} \dfrac{\partial y_{1}}{\partial x_{i}} x_{i}^{\prime}(0)\\ \vdots \\ \sum \limits_{i=1}^{n} \dfrac{\partial y_{m}}{\partial x_{i}} x_{i}^{\prime}(0)
\end{bmatrix}
\\ =&\ \begin{bmatrix}
\dfrac{\partial y_{1}}{\partial x_{1}} & \dfrac{\partial y_{1}}{\partial x_{2}} & \dots & \dfrac{\partial y_{1}}{\partial x_{n}}
\\[1em] \dfrac{\partial y_{2}}{\partial x_{1}} & \dfrac{\partial y_{2}}{\partial x_{2}} & \dots & \dfrac{\partial y_{2}}{\partial x_{n}}
\\[1ex] \vdots & \vdots & \ddots & \vdots
\\[1ex] \dfrac{\partial y_{m}}{\partial x_{1}} & \dfrac{\partial y_{m}}{\partial x_{2}} & \dots & \dfrac{\partial y_{m}}{\partial x_{n}}
\end{bmatrix}
\begin{bmatrix}
x_{1}^{\prime}(0) \\ \vdots \\ x_{n}^{\prime}(0)
\end{bmatrix}
\\ =&\ \begin{bmatrix}
\dfrac{\partial y_{1}}{\partial x_{1}} & \dfrac{\partial y_{1}}{\partial x_{2}} & \dots & \dfrac{\partial y_{1}}{\partial x_{n}}
\\[1em] \dfrac{\partial y_{2}}{\partial x_{1}} & \dfrac{\partial y_{2}}{\partial x_{2}} & \dots & \dfrac{\partial y_{2}}{\partial x_{n}}
\\[1ex] \vdots & \vdots & \ddots & \vdots
\\[1ex] \dfrac{\partial y_{m}}{\partial x_{1}} & \dfrac{\partial y_{m}}{\partial x_{2}} & \dots & \dfrac{\partial y_{m}}{\partial x_{n}}
\end{bmatrix}
v
\end{align*}
β ′ ( 0 ) = = = i = 1 ∑ n ∂ x i ∂ y 1 x i ′ ( 0 ) ⋮ i = 1 ∑ n ∂ x i ∂ y m x i ′ ( 0 ) ∂ x 1 ∂ y 1 ∂ x 1 ∂ y 2 ⋮ ∂ x 1 ∂ y m ∂ x 2 ∂ y 1 ∂ x 2 ∂ y 2 ⋮ ∂ x 2 ∂ y m … … ⋱ … ∂ x n ∂ y 1 ∂ x n ∂ y 2 ⋮ ∂ x n ∂ y m x 1 ′ ( 0 ) ⋮ x n ′ ( 0 ) ∂ x 1 ∂ y 1 ∂ x 1 ∂ y 2 ⋮ ∂ x 1 ∂ y m ∂ x 2 ∂ y 1 ∂ x 2 ∂ y 2 ⋮ ∂ x 2 ∂ y m … … ⋱ … ∂ x n ∂ y 1 ∂ x n ∂ y 2 ⋮ ∂ x n ∂ y m v
Therefore, d p ϕ d_{p}\phi d p ϕ is a linear transformation represented by the following matrix.
d p ϕ = [ ∂ y 1 ∂ x 1 ∂ y 1 ∂ x 2 … ∂ y 1 ∂ x n ∂ y 2 ∂ x 1 ∂ y 2 ∂ x 2 … ∂ y 2 ∂ x n ⋮ ⋮ ⋱ ⋮ ∂ y m ∂ x 1 ∂ y m ∂ x 2 … ∂ y m ∂ x n ]
d_{p}\phi = \begin{bmatrix}
\dfrac{\partial y_{1}}{\partial x_{1}} & \dfrac{\partial y_{1}}{\partial x_{2}} & \dots & \dfrac{\partial y_{1}}{\partial x_{n}}
\\[1em] \dfrac{\partial y_{2}}{\partial x_{1}} & \dfrac{\partial y_{2}}{\partial x_{2}} & \dots & \dfrac{\partial y_{2}}{\partial x_{n}}
\\[1ex] \vdots & \vdots & \ddots & \vdots
\\[1ex] \dfrac{\partial y_{m}}{\partial x_{1}} & \dfrac{\partial y_{m}}{\partial x_{2}} & \dots & \dfrac{\partial y_{m}}{\partial x_{n}}
\end{bmatrix}
d p ϕ = ∂ x 1 ∂ y 1 ∂ x 1 ∂ y 2 ⋮ ∂ x 1 ∂ y m ∂ x 2 ∂ y 1 ∂ x 2 ∂ y 2 ⋮ ∂ x 2 ∂ y m … … ⋱ … ∂ x n ∂ y 1 ∂ x n ∂ y 2 ⋮ ∂ x n ∂ y m
This is also the Jacobian of the function y − 1 ∘ ϕ ∘ x \mathbf{y}^{-1} \circ \phi \circ \mathbf{x} y − 1 ∘ ϕ ∘ x .
d ϕ p = Jacobian of y − 1 ∘ ϕ ∘ x = ∂ ( y 1 , … , y m ) ∂ ( x 1 , … , x n )
d\phi_{p} = \text{Jacobian of } \mathbf{y}^{-1} \circ \phi \circ \mathbf{x} = \dfrac{\partial (y_{1}, \dots, y_{m})}{\partial (x_{1}, \dots, x_{n})}
d ϕ p = Jacobian of y − 1 ∘ ϕ ∘ x = ∂ ( x 1 , … , x n ) ∂ ( y 1 , … , y m )
■