logo

Embedding Theorems in Lp Spaces 📂Lebesgue Spaces

Embedding Theorems in Lp Spaces

Theorem1

If ΩRn\Omega \subset \mathbb{R}^{n} is an open set and let’s assume vol(Ω)=Ω1dx<\text{vol}(\Omega) = \int_{\Omega} 1 dx \lt \infty.

(a) For 1pq1 \le p \le q \le \infty, if uLq(Ω)u \in L^{q}(\Omega) then, uLp(Ω)u \in L^{p}(\Omega) and

up(vol(Ω))1p1quq \begin{equation} \left\| u \right\|_{p} \le \left( \text{vol}(\Omega) \right)^{\frac{1}{p} - \frac{1}{q}} \left\| u \right\|_{q} \end{equation}

And LqL^{q} is embedded into LpL^{p}.

Lq(Ω)Lp(Ω) \begin{equation} L^{q}(\Omega) \to L^{p}(\Omega) \end{equation}

(b) For 1pq1 \le p \le q \le \infty, if uL(Ω)u \in L^{\infty}(\Omega) then,

limpup=u \begin{equation} \lim \limits_{p \to \infty} \left\| u \right\|_{p} = \left\| u \right\|_{\infty} \end{equation}

(c) For all 1p<1 \le p \lt \infty, if uLp(Ω)u \in L^{p}(\Omega) and there exists KK that is upK\left\| u \right\|_{p} \le K,

uL(Ω)anduK \begin{equation} u \in L^{\infty}(\Omega) \quad \text{and} \quad \left\| u \right\|_{\infty} \le K \end{equation}

Explanation

(a) When 1pq1 \le p \le q, generally, there is no inclusion relation between the space of LpL^{p} and LqL^{q}. However, if the domain’s volume is finite, then LqLpL^{q} \subset L^{p} holds.

(b) Since the above holds when q=q = \infty, if uLu \in L^{\infty}, for all 1p<1 \le p \lt \infty, uLpu \in L^{p} and the limit of p\left\| \cdot \right\| _{p} converges to \left\| \cdot \right\|_{\infty}.

(c) The assumption about constant KK does not mean there exists one for all pp respectively, but means one KK satisfies upK\left\| u \right\|_{p} \le K for all pp. As (a) and (b) suggest, the larger pp becomes, it turns into a smaller space, which can be considered as L(Ω)=1p<Lp(Ω){L^{\infty}(\Omega) = \bigcap\limits_{1 \le p \lt \infty} L^{p}(\Omega)}.

Proof

(a)

If either p=qp = q or q=q = \infty holds, it is trivial that (1)(1) and (2)(2) are true. So, let’s assume 1p<q<1 \le p \lt q \lt \infty and uLq(Ω)u \in L^{q}(\Omega).

Lemma: Generalized Hölder’s Inequality

If three constants α>0,β>0,γ>0\alpha \gt 0, \beta \gt 0, \gamma \gt 0 satisfy 1α+1β=1γ\dfrac{1}{\alpha} + \dfrac{1}{\beta} = \dfrac{1}{\gamma} and fLα(Ω),gLβ(Ω)f \in {L}^{\alpha}(\Omega), g \in {L}^{\beta}(\Omega), then fgLγ(Ω)fg \in L^{\gamma}(\Omega) and the following inequality holds.

fgγ=(Ωf(x)g(x)γdx)1/γfαgβ \| fg \|_{\gamma} = \left( \int_{\Omega} |f(x)g(x)|^{\gamma} dx \right)^{1 / \gamma} \le \| f \|_{\alpha} \| g \|_{\beta}

Substituting α=q,β=1p1q,γ=p\alpha = q, \beta = \dfrac{1}{p}-\dfrac{1}{q}, \gamma = p, f=uf = u, and g=1g = 1 into the lemma above gives uLq(Ω),1L1p1q(Ω)u \in L^{q}(\Omega), 1 \in L^{\frac{1}{p}-\frac{1}{q}}(\Omega), therefore,

(Ωu(x)1pdx)1/puq11p1q    up(Ω1dx)1p1quq= (vol(Ω))1p1quq \begin{align*} && \left( \int_{\Omega} \left| u(x) \cdot 1 \right|^{p} dx \right)^{1 / p} \le& \left\| u \right\|_{q} \left\| 1 \right\|_{\frac{1}{p} - \frac{1}{q}} \\ \implies && \left\| u \right\|_{p} \le& \left( \int_{\Omega} 1 dx \right)^{\frac{1}{p} - \frac{1}{q}} \left\| u \right\|_{q} \\ && =&\ \left( \text{vol}(\Omega) \right)^{\frac{1}{p} - \frac{1}{q}} \left\| u \right\|_{q} \end{align*}

Thus, uLp(Ω)u \in L^{p}(\Omega) holds.

Embedding

  • XX is a subspace of YY.
  • M>0 such that IxYMxX,xX\exists M \gt 0 \text{ such that } \left\| Ix \right\|_{{Y}} \le M \left\| x \right\|_{X},\quad x \in X

Also, if we let M=(vol(Ω))1p1qM = \left( \text{vol}(\Omega) \right)^{\frac{1}{p} - \frac{1}{q}}

upMuq \left\| u \right\|_{p} \le M \left\| u \right\|_{q}

Therefore, by the definition of embedding, we can see that Lq(Ω)Lp(Ω)L^{q}(\Omega) \to L^{p}(\Omega) is an embedding.

(b)

From the result of (a), the following holds.

lim suppupu \limsup _{p \to \infty} \left\| u \right\|_{p} \le \left\| u \right\|_{\infty}

Meanwhile, for any ϵ>0\epsilon \gt 0, there exists a set AΩA \subset \Omega with a positive measure μ(A)\mu (A) satisfying the following condition.

u(x)uϵ,if xA \left| u(x) \right| \ge \left\| u \right\|_{\infty} - \epsilon,\quad \text{if } x \in A

If such AA does not exist, u\left\| u \right\|_{\infty} would not satisfy the definition of \left\| \cdot \right\|_{\infty}, hence the existence of AA is guaranteed. Therefore, the following formula holds.

Ωu(x)pdxAu(x)pdxA(uϵ)pdxμ(A)(uϵ)p \int_{\Omega} \left| u(x) \right|^{p} dx \ge \int_{A} \left| u(x) \right|^{p} dx \ge \int_{A} \left( \left\| u \right\|_{\infty} - \epsilon \right)^{p} dx \ge \mu (A) \left( \left\| u \right\|_{\infty} - \epsilon \right)^{p}

Thus, we obtain the following.

up(μ(A))1/p(uϵ) \left\| u \right\|_{p} \ge \left( \mu (A) \right)^{1/p} \left( \left\| u \right\|_{\infty} - \epsilon \right)

This must hold for all ϵ\epsilon and any corresponding AA, thus

lim infpupu \liminf \limits_{p \to \infty} \left\| u \right\|_{p} \ge \left\| u \right\|_{\infty}

Therefore,

lim infpuplim suppupulim infpuplim suppup \liminf \limits_{p \to \infty} \left\| u \right\|_{p} \le \limsup _{p \to \infty} \left\| u \right\|_{p} \le \left\| u \right\|_{\infty} \le \liminf \limits_{p \to \infty} \left\| u \right\|_{p} \le \limsup _{p \to \infty} \left\| u \right\|_{p}

    lim infpup=u=lim suppup \implies \liminf _{p \to \infty} \left\| u \right\|_{p} = \left\| u \right\|_{\infty} = \limsup \limits_{p \to \infty} \left\| u \right\|_{p}

    limpup=u \implies \lim \limits_{p \to \infty} \left\| u \right\|_{p} = \left\| u \right\|_{\infty}

(c)

Let’s assume for all 1p<1 \le p \lt \infty, there exists KK that is upK\left\| u \right\|_{p} \le K. And suppose either uL(Ω)u \in L^{\infty}(\Omega) or uK\left\| u \right\|_{\infty} \le K does not hold. Then, according to the definition of \left\| \cdot \right\|_{\infty}, we can find a constant K1K_{1} and a set AΩA \subset \Omega that satisfies the following.

K1>Kandμ(A)>0andu(x)>K1 for xA K_{1} \gt K \quad \text{and} \quad \mu (A) \gt 0 \quad \text{and} \quad \left| u(x) \right| \gt K_{1} \text{ for } x \in A

Then, as shown in the proof of (b), the following holds.

lim infpupK1>K \liminf \limits_{p \to \infty} \left\| u \right\|_{p} \ge K_{1} \gt K

This contradicts the assumption that for all pp, upK\left\| u \right\|_{p} \le K holds. Therefore,

uL(Ω)anduK u \in L^{\infty}(\Omega) \quad \text{and} \quad \left\| u \right\|_{\infty} \le K


  1. Robert A. Adams and John J. F. Foutnier, Sobolev Space (2nd Edition, 2003), p28-29 ↩︎