logo

The Matrix Representation of a Linear Transformation 📂Linear Algebra

The Matrix Representation of a Linear Transformation

Definition1

Let’s call V,WV, W a finite-dimensional vector space. Let’s call β={v1,,vn}\beta = \left\{ \mathbf{v}_{1}, \dots, \mathbf{v}_{n} \right\} and γ={w1,,wm}\gamma = \left\{ \mathbf{w}_{1}, \dots, \mathbf{w}_{m} \right\} the ordered bases for VV and WW, respectively. Let’s call T:VWT : V \to W a linear transformation. Then, by the uniqueness of the basis representation, there exists a unique scalar aija_{ij} satisfying the following.

T(vj)=i=1maijwi=a1jw1++amjwm for 1jn T(\mathbf{v}_{j}) = \sum_{i=1}^{m}a_{ij}\mathbf{w}_{i} = a_{1j}\mathbf{w}_{1} + \cdots + a_{mj}\mathbf{w}_{m} \quad \text{ for } 1 \le j \le n

At this time, the m×nm \times n matrix AA defined by Aij=aijA_{ij} = a_{ij} is called the matrix representation for TT relative to the ordered bases β\beta and γ\gamma, and is denoted by [T]γ,β[T]_{\gamma, \beta} or [T]βγ[T]_{\beta}^{\gamma}.

Explanation

Every linear transformation can be represented by a matrix, and conversely, there exists a linear transformation corresponding to any matrix, essentially making the linear transformation and its matrix representation fundamentally the same. This is one of the reasons why matrices are studied in linear algebra. From the definition, such matrix representation can be found using the image of the basis.

If V=WV=W and β=γ\beta=\gamma, it is simply denoted as follows.

[T]β=[T]γ,β [T]_{\beta} = [T]_{\gamma, \beta}

Properties

Let’s call V,WV, W a finite-dimensional vector space with an ordered basis β,γ\beta, \gamma given. And let’s call it T,U:VWT, U : V \to W. Then the following holds.

  • [T+U]βγ=[T]βγ+[U]βγ[T + U]_{\beta}^{\gamma} = [T]_{\beta}^{\gamma} + [U]_{\beta}^{\gamma}

  • [aT]βγ=a[T]βγ[aT]_{\beta}^{\gamma} = a[T]_{\beta}^{\gamma}

Regarding TT and its inverse transformation T1T^{-1}, the following holds\\[0.6em]

  • TT being invertible is equivalent to [T]βγ[T]_{\beta}^{\gamma} being invertible. Furthermore, [T1]βγ=([T]βγ)1[T^{-1}]_{\beta}^{\gamma} = ([T]_{\beta}^{\gamma})^{-1}.

Let’s call V,W,ZV, W, Z a finite-dimensional vector space, and α,β,γ\alpha, \beta, \gamma their respective ordered bases. And let’s call T:VWT : V \to W, U:WZU : W \to Z linear transformations. Then the following holds\\[0.6em]

  • [UT]αγ=[U]βγ[T]αβ[UT]_{\alpha}^{\gamma} = [U]_{\beta}^{\gamma}[T]_{\alpha}^{\beta}

Finding the Matrix1

Let’s call the basis of VV as β\beta, and the basis of WW as γ\gamma. And let’s call the coordinate vector of xV\mathbf{x} \in V as [x]β[\mathbf{x}]_{\beta}, and the coordinate vector of T(x)WT(\mathbf{x})\in W as [T(x)]γ[T(\mathbf{x})]_{\gamma}.

Slide1.PNG

Then our goal is to find the m×nm \times n matrix AA that transforms the vector [x]β[\mathbf{x}]_{\beta} into the vector [T(x)]γ[T(\mathbf{x})]_{\gamma} by matrix multiplication. By finding AA, we can perform the linear transformation TT by calculating matrix multiplication without specifically calculating T(x)T(\mathbf{x}) according to the given TT.

A[x]β=[T(x)]γ \begin{equation} A[\mathbf{x}]_{\beta} = [T(\mathbf{x})]_{\gamma} \end{equation}

Let’s specifically call the two bases β={v1,,vn}\beta = \left\{ \mathbf{v}_{1}, \dots, \mathbf{v}_{n} \right\}, γ={w1,,wm}\gamma = \left\{ \mathbf{w}_{1}, \dots, \mathbf{w}_{m} \right\}. Then, for each vi\mathbf{v}_{i}, (1)(1) must hold, thus we obtain the following.

A[v1]β=[T(v1)]γ,A[v2]β=[T(v2)]γ,,A[vn]β=[T(vn)]γ \begin{equation} A[\mathbf{v}_{1}]_{\beta} = [T(\mathbf{v}_{1})]_{\gamma},\quad A[\mathbf{v}_{2}]_{\beta} = [T(\mathbf{v}_{2})]_{\gamma},\quad \dots,\quad A[\mathbf{v}_{n}]_{\beta} = [T(\mathbf{v}_{n})]_{\gamma} \end{equation}

Let’s say the matrix AA is as follows.

A=[a11a12a1na21a22a2nam1am2amn] A = \begin{bmatrix} a_{11} & a_{12} & \cdots & a_{1n} \\ a_{21} & a_{22} & \cdots & a_{2n} \\ \vdots & \vdots & \ddots & \vdots \\ a_{m1} & a_{m2} & \cdots & a_{mn} \end{bmatrix}

The [vi]β[\mathbf{v}_{i}]_{\beta}s are as follows.

[v1]β=[100],[v2]β=[010],,[vn]β=[001] [\mathbf{v}_{1}]_{\beta} = \begin{bmatrix} 1 \\ 0 \\ \vdots \\ 0 \end{bmatrix}, \quad [\mathbf{v}_{2}]_{\beta} = \begin{bmatrix} 0 \\ 1 \\ \vdots \\ 0 \end{bmatrix}, \quad \dots,\quad [\mathbf{v}_{n}]_{\beta} = \begin{bmatrix} 0 \\ 0 \\ \vdots \\ 1 \end{bmatrix}

Therefore, we obtain the following.

A[v1]β=[a11a12a1na21a22a2nam1am2amn][100]=[a11a21am1]A[v2]β=[a11a12a1na21a22a2nam1am2amn][010]=[a12a22am2]A[vn]β=[a11a12a1na21a22a2nam1am2amn][100]=[a1na2namn] \begin{align*} A[\mathbf{v}_{1}]_{\beta} = \begin{bmatrix} a_{11} & a_{12} & \cdots & a_{1n} \\ a_{21} & a_{22} & \cdots & a_{2n} \\ \vdots & \vdots & \ddots & \vdots \\ a_{m1} & a_{m2} & \cdots & a_{mn} \end{bmatrix} \begin{bmatrix} 1 \\ 0 \\ \vdots \\ 0 \end{bmatrix} &= \begin{bmatrix} a_{11} \\ a_{21} \\ \vdots \\ a_{m1} \end{bmatrix} \\[3em] A[\mathbf{v}_{2}]_{\beta} = \begin{bmatrix} a_{11} & a_{12} & \cdots & a_{1n} \\ a_{21} & a_{22} & \cdots & a_{2n} \\ \vdots & \vdots & \ddots & \vdots \\ a_{m1} & a_{m2} & \cdots & a_{mn} \end{bmatrix} \begin{bmatrix} 0 \\ 1 \\ \vdots \\ 0 \end{bmatrix} &= \begin{bmatrix} a_{12} \\ a_{22} \\ \vdots \\ a_{m2} \end{bmatrix} \\[1em] &\vdots \\[1em] A[\mathbf{v}_{n}]_{\beta} = \begin{bmatrix} a_{11} & a_{12} & \cdots & a_{1n} \\ a_{21} & a_{22} & \cdots & a_{2n} \\ \vdots & \vdots & \ddots & \vdots \\ a_{m1} & a_{m2} & \cdots & a_{mn} \end{bmatrix} \begin{bmatrix} 1 \\ 0 \\ \vdots \\ 0 \end{bmatrix} &= \begin{bmatrix} a_{1n} \\ a_{2n} \\ \vdots \\ a_{mn} \end{bmatrix} \end{align*}

Then, by (2)(2), we obtain the following.

[T(v1)]γ=[a11a21am1],[T(v2)]γ=[a12a22am2],,[T(vn)]γ=[a1na2namn] [T(\mathbf{v}_{1})]_{\gamma} = \begin{bmatrix} a_{11} \\ a_{21} \\ \vdots \\ a_{m1} \end{bmatrix},\quad [T(\mathbf{v}_{2})]_{\gamma} = \begin{bmatrix} a_{12} \\ a_{22} \\ \vdots \\ a_{m2} \end{bmatrix},\quad \dots,\quad [T(\mathbf{v}_{n})]_{\gamma} = \begin{bmatrix} a_{1n} \\ a_{2n} \\ \vdots \\ a_{mn} \end{bmatrix}

Therefore, the jjth column of the matrix AA is [T(vj)]γ[T(\mathbf{v}_{j})]_{\gamma}.

A=[[T(v1)]γ[T(v2)]γ[T(vn)]γ] A = \begin{bmatrix} [T(\mathbf{v}_{1})]_{\gamma} & [T(\mathbf{v}_{2})]_{\gamma} & \cdots & [T(\mathbf{v}_{n})]_{\gamma}\end{bmatrix}

Thus, the following equation holds.

[T]γ,β[x]β=[T(x)]γ=[T]βγ[x]β [T]_{\gamma, \beta} [\mathbf{x}]_{\beta} = [T(\mathbf{x})]_{\gamma} = [T]_{\beta}^{\gamma}[\mathbf{x}]_{\beta}

This can be intuitively seen as canceling out adjacent (or duplicated in subscripts) 2 of β\beta and substituting x\mathbf{x} into TT.


  1. Stephen H. Friedberg, Linear Algebra (4th Edition, 2002), p80-81 ↩︎ ↩︎