logo

Partial Derivatives 📂Vector Analysis

Partial Derivatives

Definitions1

Let us define ERnE\subset \mathbb{R}^{n} as an open set, and xE\mathbf{x}\in E, and f:ERm\mathbf{f} : E \to \mathbb{R}^{m}. Let {e1,e2,,en}\left\{ \mathbf{e}_{1}, \mathbf{e}_{2}, \dots, \mathbf{e}_{n} \right\}, and {u1,u2,,um}\left\{ \mathbf{u}_{1}, \mathbf{u}_{2}, \dots, \mathbf{u}_{m} \right\} be the standard basis of Rn\mathbb{R}^{n} and Rm\mathbb{R}^{m}, respectively.

Then, the components fi:RnRf_{i} : \mathbb{R}^{n} \to \mathbb{R} of f\mathbf{f} are defined as follows.

f(x)=i=1mfi(x)ui,xE \mathbf{f} (\mathbf{x}) = \sum_{i=1}^{m} f_{i}(\mathbf{x})\mathbf{u}_{i}, \quad \mathbf{x} \in E

or

fi(x):=f(x)ui,i{1,,m} f_{i} (\mathbf{x}) := \mathbf{f} (\mathbf{x}) \cdot \mathbf{u}_{i},\quad i \in \left\{ 1,\dots, m \right\}

If the following limit exists, it is called the partial derivative of fif_{i} with respect to xjx_{j}, denoted by DjfiD_{j}f_{i} or fixj\dfrac{\partial f_{i}}{\partial x_{j}}.

fixj=Djfi:=limt0fi(x+tej)fi(x)t \dfrac{\partial f_{i}}{\partial x_{j}} = D_{j}f_{i} := \lim _{t \to 0} \dfrac{f_{i}(\mathbf{x}+ t \mathbf{e}_{j}) -f_{i}(\mathbf{x})}{t}

Explanation

The term “partial” means biased or considering differentiation with respect only to one variable instead of all variables. This is in contrast to the total derivative.

It’s not a partial ˇ\check{} function, but a partial derivative of ˇ\check{}.

Between the total derivative and the partial derivative of f\mathbf{f}, the following theorem holds.

Theorem

Let E,x,fE, \mathbf{x}, \mathbf{f} be as defined in Definitions. Suppose f\mathbf{f} is differentiable at x\mathbf{x}. Then, each partial derivative Djfi(x)D_{j}f_{i}(\mathbf{x}) exists, and the following equation holds.

f(x)ej=i=1mDjfi(x)ui,j{1,,n} \mathbf{f}^{\prime}(\mathbf{x})\mathbf{e}_{j} = \sum_{i=1}^{m} D_{j}f_{i}(\mathbf{x})\mathbf{u}_{i},\quad j \in \left\{ 1,\dots, n \right\}

Corollary

f(x)\mathbf{f}^{\prime}(\mathbf{x}) can be represented as the following matrix, which is a linear transformation.

f(x)=[(D1f1)(x)(D2f1)(x)(Dnf1)(x)(D1f2)(x)(D2f2)(x)(Dnf2)(x)(D1fm)(x)(D2fm)(x)(Dnfm)(x)] \mathbf{f}^{\prime}(\mathbf{x}) = \begin{bmatrix} (D_{1}f_{1}) (\mathbf{x}) & (D_{2}f_{1}) (\mathbf{x}) & \cdots & (D_{n}f_{1}) (\mathbf{x}) \\ (D_{1}f_{2}) (\mathbf{x}) & (D_{2}f_{2}) (\mathbf{x}) & \cdots & (D_{n}f_{2}) (\mathbf{x}) \\ \vdots & \vdots & \ddots & \vdots \\ (D_{1}f_{m}) (\mathbf{x}) & (D_{2}f_{m}) (\mathbf{x}) & \cdots & (D_{n}f_{m}) (\mathbf{x}) \end{bmatrix}

This is also known as the Jacobian matrix of f\mathbf{f}.

Proof

Let us fix jj. Assuming that f\mathbf{f} is differentiable at x\mathbf{x}, the following equation holds.

f(x+tej)f(x)=f(x)(tej)+r(tej) \mathbf{f}( \mathbf{x} + t \mathbf{e}_{j}) - \mathbf{f}(\mathbf{x}) = \mathbf{f}^{\prime}(\mathbf{x})(t\mathbf{e}_{j}) + \mathbf{r}(t\mathbf{e}_{j})

Here, r(tej)\mathbf{r}(t\mathbf{e}_{j}) is a remainder that satisfies the following.

limt0r(tej)t=0 \lim _{t \to 0} \dfrac{|\mathbf{r}(t\mathbf{e}_{j}) |}{t}=0

Since f(x)\mathbf{f}^{\prime}(\mathbf{x}) is a linear transformation, the following holds.

f(x+tej)f(x)t=f(x)(tej)t+r(tej)t=f(x)(ej)+r(tej)t \dfrac{\mathbf{f}( \mathbf{x} + t \mathbf{e}_{j}) - \mathbf{f}(\mathbf{x})}{t} = \dfrac{\mathbf{f}^{\prime}(\mathbf{x})(t\mathbf{e}_{j})}{t} + \dfrac{\mathbf{r}(t\mathbf{e}_{j})}{t} = \mathbf{f}^{\prime}(\mathbf{x})(\mathbf{e}_{j}) + \dfrac{\mathbf{r}(t\mathbf{e}_{j})}{t}

Taking the limit as limt0\lim _{t \to 0} on both sides gives us the following.

limt0f(x+tej)f(x)t=f(x)ej \lim _{t \to 0} \dfrac{\mathbf{f}( \mathbf{x} + t \mathbf{e}_{j}) - \mathbf{f}(\mathbf{x})}{t} = \mathbf{f}^{\prime}(\mathbf{x})\mathbf{e}_{j}

Expressing f\mathbf{f} in components yields:

f(x)ej=limt0f(x+tej)f(x)t=limt0i=1mfi(x+tej)uii=1mfi(x)uit=i=1mlimt0fi(x+tej)fi(x)tui \begin{align*} \mathbf{f}^{\prime}(\mathbf{x})\mathbf{e}_{j} &= \lim _{t \to 0} \dfrac{\mathbf{f}( \mathbf{x} + t \mathbf{e}_{j}) - \mathbf{f}(\mathbf{x})}{t} \\ &= \lim _{t \to 0} \dfrac{\sum_{i=1}^{m} f_{i}( \mathbf{x} + t \mathbf{e}_{j})\mathbf{u}_{i} - \sum_{i=1}^{m} f_{i}(\mathbf{x})\mathbf{u}_{i}}{t} \\ &= \sum_{i=1}^{m} \lim _{t \to 0} \dfrac{f_{i}( \mathbf{x} + t \mathbf{e}_{j}) - f_{i}(\mathbf{x})}{t} \mathbf{u}_{i} \end{align*}

Then, by the definition of partial derivatives, we obtain:

f(x)ej=i=1mDjfi(x)ui \mathbf{f}^{\prime}(\mathbf{x})\mathbf{e}_{j} = \sum_{i=1}^{m} D_{j}f_{i}(\mathbf{x}) \mathbf{u}_{i}

Examples

Suppose that f:R3R,γ:RR3f : \R^{3} \to \R, \gamma : \R \to \R^{3} is a differentiable function. Also,

γ(t)=(x(t),y(t),z(t)) \gamma (t) = \left( x(t), y(t), z(t) \right)

And let us denote the composition of ff and γ\gamma as g=fγg = f \circ \gamma.

g(t)=fγ(t)=f(γ(t)) g(t) = f \circ \gamma (t) = f \left( \gamma (t) \right)

Then, gg^{\prime}, by the chain rule, definition of partial derivatives, and the theorem introduced above, goes as follows.

dgdt(t0)=g(t0)= f(γ(t0))γ(t0)= [D1f(γ(t0))D2f(γ(t0))D3f(γ(t0))][Dγ1(t0)Dγ2(t0)Dγ3(t0)]= [fx(γ(t0))fy(γ(t0))fz(γ(t0))][dxdt(t0)dydt(t0)dzdt(t0)]= fx(γ(t0))dxdt(t0)+fy(γ(t0))dydt(t0)+fz(γ(t0))dzdt(t0) \begin{align*} \dfrac{d g}{d t}(t_{0}) = g^{\prime}(t_{0}) =&\ f^{\prime}(\gamma (t_{0})) \gamma^{\prime}(t_{0}) \\ =&\ \begin{bmatrix} D_{1}f(\gamma (t_{0})) & D_{2}f(\gamma (t_{0})) & D_{3}f(\gamma (t_{0})) \end{bmatrix} \begin{bmatrix} D\gamma_{1} (t_{0}) \\ D\gamma_{2} (t_{0}) \\ D\gamma_{3} (t_{0}) \end{bmatrix} \\ =&\ \begin{bmatrix} \dfrac{\partial f}{\partial x}(\gamma (t_{0})) & \dfrac{\partial f}{\partial y}(\gamma (t_{0})) & \dfrac{\partial f}{\partial z}(\gamma (t_{0})) \end{bmatrix} \begin{bmatrix} \dfrac{d x}{d t}(t_{0}) \\ \dfrac{d y}{d t}(t_{0}) \\ \dfrac{d z}{d t}(t_{0}) \end{bmatrix} \\ =&\ \dfrac{\partial f}{\partial x}(\gamma (t_{0}))\dfrac{d x}{d t}(t_{0}) + \dfrac{\partial f}{\partial y}(\gamma (t_{0}))\dfrac{d y}{d t}(t_{0}) + \dfrac{\partial f}{\partial z}(\gamma (t_{0}))\dfrac{d z}{d t}(t_{0}) \end{align*}

Therefore,

    dgdt=fxdxdt+fydydt+fzdzdt \implies \dfrac{d g}{d t} = \dfrac{\partial f}{\partial x}\dfrac{d x}{d t} + \dfrac{\partial f}{\partial y}\dfrac{d y}{d t} + \dfrac{\partial f}{\partial z}\dfrac{d z}{d t}


  1. Walter Rudin, Principles of Mathematical Analysis (3rd Edition, 1976), p215 ↩︎