Partial Derivatives
📂Vector Analysis Partial Derivatives Definitions Let us define E ⊂ R n E\subset \mathbb{R}^{n} E ⊂ R n as an open set , and x ∈ E \mathbf{x}\in E x ∈ E , and f : E → R m \mathbf{f} : E \to \mathbb{R}^{m} f : E → R m . Let { e 1 , e 2 , … , e n } \left\{ \mathbf{e}_{1}, \mathbf{e}_{2}, \dots, \mathbf{e}_{n} \right\} { e 1 , e 2 , … , e n } , and { u 1 , u 2 , … , u m } \left\{ \mathbf{u}_{1}, \mathbf{u}_{2}, \dots, \mathbf{u}_{m} \right\} { u 1 , u 2 , … , u m } be the standard basis of R n \mathbb{R}^{n} R n and R m \mathbb{R}^{m} R m , respectively.
Then, the components f i : R n → R f_{i} : \mathbb{R}^{n} \to \mathbb{R} f i : R n → R of f \mathbf{f} f are defined as follows.
f ( x ) = ∑ i = 1 m f i ( x ) u i , x ∈ E
\mathbf{f} (\mathbf{x}) = \sum_{i=1}^{m} f_{i}(\mathbf{x})\mathbf{u}_{i}, \quad \mathbf{x} \in E
f ( x ) = i = 1 ∑ m f i ( x ) u i , x ∈ E
or
f i ( x ) : = f ( x ) ⋅ u i , i ∈ { 1 , … , m }
f_{i} (\mathbf{x}) := \mathbf{f} (\mathbf{x}) \cdot \mathbf{u}_{i},\quad i \in \left\{ 1,\dots, m \right\}
f i ( x ) := f ( x ) ⋅ u i , i ∈ { 1 , … , m }
If the following limit exists, it is called the partial derivative of f i f_{i} f i with respect to x j x_{j} x j , denoted by D j f i D_{j}f_{i} D j f i or ∂ f i ∂ x j \dfrac{\partial f_{i}}{\partial x_{j}} ∂ x j ∂ f i .
∂ f i ∂ x j = D j f i : = lim t → 0 f i ( x + t e j ) − f i ( x ) t
\dfrac{\partial f_{i}}{\partial x_{j}} = D_{j}f_{i} := \lim _{t \to 0} \dfrac{f_{i}(\mathbf{x}+ t \mathbf{e}_{j}) -f_{i}(\mathbf{x})}{t}
∂ x j ∂ f i = D j f i := t → 0 lim t f i ( x + t e j ) − f i ( x )
Explanation The term “partial” means biased or considering differentiation with respect only to one variable instead of all variables. This is in contrast to the total derivative .
It’s not a partial ˇ \check{} ˇ function, but a partial derivative of ˇ \check{} ˇ .
Between the total derivative and the partial derivative of f \mathbf{f} f , the following theorem holds.
Theorem Let E , x , f E, \mathbf{x}, \mathbf{f} E , x , f be as defined in Definitions . Suppose f \mathbf{f} f is differentiable at x \mathbf{x} x . Then, each partial derivative D j f i ( x ) D_{j}f_{i}(\mathbf{x}) D j f i ( x ) exists, and the following equation holds.
f ′ ( x ) e j = ∑ i = 1 m D j f i ( x ) u i , j ∈ { 1 , … , n }
\mathbf{f}^{\prime}(\mathbf{x})\mathbf{e}_{j} = \sum_{i=1}^{m} D_{j}f_{i}(\mathbf{x})\mathbf{u}_{i},\quad j \in \left\{ 1,\dots, n \right\}
f ′ ( x ) e j = i = 1 ∑ m D j f i ( x ) u i , j ∈ { 1 , … , n }
Corollary f ′ ( x ) \mathbf{f}^{\prime}(\mathbf{x}) f ′ ( x ) can be represented as the following matrix, which is a linear transformation .
f ′ ( x ) = [ ( D 1 f 1 ) ( x ) ( D 2 f 1 ) ( x ) ⋯ ( D n f 1 ) ( x ) ( D 1 f 2 ) ( x ) ( D 2 f 2 ) ( x ) ⋯ ( D n f 2 ) ( x ) ⋮ ⋮ ⋱ ⋮ ( D 1 f m ) ( x ) ( D 2 f m ) ( x ) ⋯ ( D n f m ) ( x ) ]
\mathbf{f}^{\prime}(\mathbf{x})
= \begin{bmatrix}
(D_{1}f_{1}) (\mathbf{x}) & (D_{2}f_{1}) (\mathbf{x}) & \cdots & (D_{n}f_{1}) (\mathbf{x})
\\ (D_{1}f_{2}) (\mathbf{x}) & (D_{2}f_{2}) (\mathbf{x}) & \cdots & (D_{n}f_{2}) (\mathbf{x})
\\ \vdots & \vdots & \ddots & \vdots
\\ (D_{1}f_{m}) (\mathbf{x}) & (D_{2}f_{m}) (\mathbf{x}) & \cdots & (D_{n}f_{m}) (\mathbf{x})
\end{bmatrix}
f ′ ( x ) = ( D 1 f 1 ) ( x ) ( D 1 f 2 ) ( x ) ⋮ ( D 1 f m ) ( x ) ( D 2 f 1 ) ( x ) ( D 2 f 2 ) ( x ) ⋮ ( D 2 f m ) ( x ) ⋯ ⋯ ⋱ ⋯ ( D n f 1 ) ( x ) ( D n f 2 ) ( x ) ⋮ ( D n f m ) ( x )
This is also known as the Jacobian matrix of f \mathbf{f} f .
Proof Let us fix j j j . Assuming that f \mathbf{f} f is differentiable at x \mathbf{x} x , the following equation holds.
f ( x + t e j ) − f ( x ) = f ′ ( x ) ( t e j ) + r ( t e j )
\mathbf{f}( \mathbf{x} + t \mathbf{e}_{j}) - \mathbf{f}(\mathbf{x}) = \mathbf{f}^{\prime}(\mathbf{x})(t\mathbf{e}_{j}) + \mathbf{r}(t\mathbf{e}_{j})
f ( x + t e j ) − f ( x ) = f ′ ( x ) ( t e j ) + r ( t e j )
Here, r ( t e j ) \mathbf{r}(t\mathbf{e}_{j}) r ( t e j ) is a remainder that satisfies the following.
lim t → 0 ∣ r ( t e j ) ∣ t = 0
\lim _{t \to 0} \dfrac{|\mathbf{r}(t\mathbf{e}_{j}) |}{t}=0
t → 0 lim t ∣ r ( t e j ) ∣ = 0
Since f ′ ( x ) \mathbf{f}^{\prime}(\mathbf{x}) f ′ ( x ) is a linear transformation , the following holds.
f ( x + t e j ) − f ( x ) t = f ′ ( x ) ( t e j ) t + r ( t e j ) t = f ′ ( x ) ( e j ) + r ( t e j ) t
\dfrac{\mathbf{f}( \mathbf{x} + t \mathbf{e}_{j}) - \mathbf{f}(\mathbf{x})}{t} = \dfrac{\mathbf{f}^{\prime}(\mathbf{x})(t\mathbf{e}_{j})}{t} + \dfrac{\mathbf{r}(t\mathbf{e}_{j})}{t} = \mathbf{f}^{\prime}(\mathbf{x})(\mathbf{e}_{j}) + \dfrac{\mathbf{r}(t\mathbf{e}_{j})}{t}
t f ( x + t e j ) − f ( x ) = t f ′ ( x ) ( t e j ) + t r ( t e j ) = f ′ ( x ) ( e j ) + t r ( t e j )
Taking the limit as lim t → 0 \lim _{t \to 0} lim t → 0 on both sides gives us the following.
lim t → 0 f ( x + t e j ) − f ( x ) t = f ′ ( x ) e j
\lim _{t \to 0} \dfrac{\mathbf{f}( \mathbf{x} + t \mathbf{e}_{j}) - \mathbf{f}(\mathbf{x})}{t} = \mathbf{f}^{\prime}(\mathbf{x})\mathbf{e}_{j}
t → 0 lim t f ( x + t e j ) − f ( x ) = f ′ ( x ) e j
Expressing f \mathbf{f} f in components yields:
f ′ ( x ) e j = lim t → 0 f ( x + t e j ) − f ( x ) t = lim t → 0 ∑ i = 1 m f i ( x + t e j ) u i − ∑ i = 1 m f i ( x ) u i t = ∑ i = 1 m lim t → 0 f i ( x + t e j ) − f i ( x ) t u i
\begin{align*}
\mathbf{f}^{\prime}(\mathbf{x})\mathbf{e}_{j} &= \lim _{t \to 0} \dfrac{\mathbf{f}( \mathbf{x} + t \mathbf{e}_{j}) - \mathbf{f}(\mathbf{x})}{t}
\\ &= \lim _{t \to 0} \dfrac{\sum_{i=1}^{m} f_{i}( \mathbf{x} + t \mathbf{e}_{j})\mathbf{u}_{i} - \sum_{i=1}^{m} f_{i}(\mathbf{x})\mathbf{u}_{i}}{t}
\\ &= \sum_{i=1}^{m} \lim _{t \to 0} \dfrac{f_{i}( \mathbf{x} + t \mathbf{e}_{j}) - f_{i}(\mathbf{x})}{t} \mathbf{u}_{i}
\end{align*}
f ′ ( x ) e j = t → 0 lim t f ( x + t e j ) − f ( x ) = t → 0 lim t ∑ i = 1 m f i ( x + t e j ) u i − ∑ i = 1 m f i ( x ) u i = i = 1 ∑ m t → 0 lim t f i ( x + t e j ) − f i ( x ) u i
Then, by the definition of partial derivatives, we obtain:
f ′ ( x ) e j = ∑ i = 1 m D j f i ( x ) u i
\mathbf{f}^{\prime}(\mathbf{x})\mathbf{e}_{j} = \sum_{i=1}^{m} D_{j}f_{i}(\mathbf{x}) \mathbf{u}_{i}
f ′ ( x ) e j = i = 1 ∑ m D j f i ( x ) u i
■
Examples Suppose that f : R 3 → R , γ : R → R 3 f : \R^{3} \to \R, \gamma : \R \to \R^{3} f : R 3 → R , γ : R → R 3 is a differentiable function. Also,
γ ( t ) = ( x ( t ) , y ( t ) , z ( t ) )
\gamma (t) = \left( x(t), y(t), z(t) \right)
γ ( t ) = ( x ( t ) , y ( t ) , z ( t ) )
And let us denote the composition of f f f and γ \gamma γ as g = f ∘ γ g = f \circ \gamma g = f ∘ γ .
g ( t ) = f ∘ γ ( t ) = f ( γ ( t ) )
g(t) = f \circ \gamma (t) = f \left( \gamma (t) \right)
g ( t ) = f ∘ γ ( t ) = f ( γ ( t ) )
Then, g ′ g^{\prime} g ′ , by the chain rule , definition of partial derivatives, and the theorem introduced above, goes as follows.
d g d t ( t 0 ) = g ′ ( t 0 ) = f ′ ( γ ( t 0 ) ) γ ′ ( t 0 ) = [ D 1 f ( γ ( t 0 ) ) D 2 f ( γ ( t 0 ) ) D 3 f ( γ ( t 0 ) ) ] [ D γ 1 ( t 0 ) D γ 2 ( t 0 ) D γ 3 ( t 0 ) ] = [ ∂ f ∂ x ( γ ( t 0 ) ) ∂ f ∂ y ( γ ( t 0 ) ) ∂ f ∂ z ( γ ( t 0 ) ) ] [ d x d t ( t 0 ) d y d t ( t 0 ) d z d t ( t 0 ) ] = ∂ f ∂ x ( γ ( t 0 ) ) d x d t ( t 0 ) + ∂ f ∂ y ( γ ( t 0 ) ) d y d t ( t 0 ) + ∂ f ∂ z ( γ ( t 0 ) ) d z d t ( t 0 )
\begin{align*}
\dfrac{d g}{d t}(t_{0}) = g^{\prime}(t_{0}) =&\ f^{\prime}(\gamma (t_{0})) \gamma^{\prime}(t_{0})
\\ =&\ \begin{bmatrix} D_{1}f(\gamma (t_{0})) & D_{2}f(\gamma (t_{0})) & D_{3}f(\gamma (t_{0})) \end{bmatrix}
\begin{bmatrix} D\gamma_{1} (t_{0}) \\ D\gamma_{2} (t_{0}) \\ D\gamma_{3} (t_{0}) \end{bmatrix}
\\ =&\ \begin{bmatrix} \dfrac{\partial f}{\partial x}(\gamma (t_{0})) & \dfrac{\partial f}{\partial y}(\gamma (t_{0})) & \dfrac{\partial f}{\partial z}(\gamma (t_{0})) \end{bmatrix}
\begin{bmatrix} \dfrac{d x}{d t}(t_{0}) \\ \dfrac{d y}{d t}(t_{0}) \\ \dfrac{d z}{d t}(t_{0}) \end{bmatrix}
\\ =&\ \dfrac{\partial f}{\partial x}(\gamma (t_{0}))\dfrac{d x}{d t}(t_{0}) + \dfrac{\partial f}{\partial y}(\gamma (t_{0}))\dfrac{d y}{d t}(t_{0}) + \dfrac{\partial f}{\partial z}(\gamma (t_{0}))\dfrac{d z}{d t}(t_{0})
\end{align*}
d t d g ( t 0 ) = g ′ ( t 0 ) = = = = f ′ ( γ ( t 0 )) γ ′ ( t 0 ) [ D 1 f ( γ ( t 0 )) D 2 f ( γ ( t 0 )) D 3 f ( γ ( t 0 )) ] D γ 1 ( t 0 ) D γ 2 ( t 0 ) D γ 3 ( t 0 ) [ ∂ x ∂ f ( γ ( t 0 )) ∂ y ∂ f ( γ ( t 0 )) ∂ z ∂ f ( γ ( t 0 )) ] d t d x ( t 0 ) d t d y ( t 0 ) d t d z ( t 0 ) ∂ x ∂ f ( γ ( t 0 )) d t d x ( t 0 ) + ∂ y ∂ f ( γ ( t 0 )) d t d y ( t 0 ) + ∂ z ∂ f ( γ ( t 0 )) d t d z ( t 0 )
Therefore,
⟹ d g d t = ∂ f ∂ x d x d t + ∂ f ∂ y d y d t + ∂ f ∂ z d z d t
\implies \dfrac{d g}{d t} = \dfrac{\partial f}{\partial x}\dfrac{d x}{d t} + \dfrac{\partial f}{\partial y}\dfrac{d y}{d t} + \dfrac{\partial f}{\partial z}\dfrac{d z}{d t}
⟹ d t d g = ∂ x ∂ f d t d x + ∂ y ∂ f d t d y + ∂ z ∂ f d t d z