logo

Inverse Matrices and Systems of Linear Equations 📂Matrix Algebra

Inverse Matrices and Systems of Linear Equations

Theorem: Equivalent Conditions for an Invertible Matrix1

Let AA be a square matrix of size n×nn\times n. Then the following statements are equivalent.

(a) AA is an invertible matrix.

(e) Ax=bA\mathbf{x}=\mathbf{b} has a solution for all matrices n×1n\times 1 of size b\mathbf{b}.

(f) Ax=bA\mathbf{x}=\mathbf{b} has exactly one solution for all matrices n×1n\times 1 of size b\mathbf{b}. That is, x=A1b\mathbf{x}=A^{-1}\mathbf{b} holds.

Description

(e) and (f) being equivalent means that if the linear system Ax=bA \mathbf{x} = \mathbf{b} has at least one solution for all matrices n×1n \times 1 of size b\mathbf{b}, then it has exactly one solution.

Proof

(a)     \implies (f)

Assume AA is an invertible matrix. Then A(A1b)=bA(A^{-1}\mathbf{b}) = \mathbf{b} holds. Substituting b=Ax\mathbf{b} = A \mathbf{x} on the right side gives:

A(A1b)=Ax    A1b=x \begin{align*} && A (A^{-1}\mathbf{b}) &= A \mathbf{x} \\ \implies && A^{-1}\mathbf{b} &= \mathbf{x} \end{align*}

Therefore, x=A1b\mathbf{x} = A^{-1} \mathbf{b} is a solution to Ax=bA \mathbf{x} = \mathbf{b}. Now, let any solution be denoted x0\mathbf{x}_{0}. Then Ax0=bA \mathbf{x}_{0} = \mathbf{b} holds, and multiplying both sides by A1A^{-1} gives x0=A1b\mathbf{x}_{0} = A^{-1} \mathbf{b}, which means the solution is unique as x=A1b\mathbf{x} = A^{-1} \mathbf{b}.

(f)     \implies (e)

This is obvious.

(e)     \implies (a)

Assume the linear system Ax=bA \mathbf{x} = \mathbf{b} has a solution for all matrices n×1n \times 1 of size b\mathbf{b}. Then the following linear systems all have solutions:

Ax=[100],Ax=[010],Ax=[001] A \mathbf{x} = \begin{bmatrix}1 \\ 0 \\ \vdots \\ 0 \end{bmatrix},\quad A \mathbf{x} = \begin{bmatrix}0 \\ 1 \\ \vdots \\ 0 \end{bmatrix},\quad A \mathbf{x} = \begin{bmatrix}0 \\ 0 \\ \vdots \\ 1 \end{bmatrix}

Let the solutions to these linear systems be sequentially denoted x1,x2,,xn\mathbf{x}_{1}, \mathbf{x}_{2}, \dots, \mathbf{x}_{n}. And let the matrix that has these solutions as column vectors be denoted CC.

C=[x1x2xn] C = \begin{bmatrix} \mathbf{x}_{1} & \mathbf{x}_{2} & \cdots & \mathbf{x}_{n} \end{bmatrix}

Calculating ACAC gives the following, so CC is the inverse of AA. Therefore, AA is invertible.

AC=A[x1x2xn]=[Ax1Ax2Axn]=[100010001]=In AC = A\begin{bmatrix} \mathbf{x}_{1} & \mathbf{x}_{2} & \cdots & \mathbf{x}_{n} \end{bmatrix} = \begin{bmatrix} A\mathbf{x}_{1} & A\mathbf{x}_{2} & \cdots & A\mathbf{x}_{n} \end{bmatrix} = \begin{bmatrix} 1 & 0 & \cdots & 0 \\ 0 & 1 & \cdots & 0 \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & \cdots & 1 \end{bmatrix} = I_{n}


  1. Howard Anton, Elementary Linear Algebra: Aplications Version (12th Edition, 2019), p64-65 ↩︎