logo

Properties of Determinants 📂Matrix Algebra

Properties of Determinants

Properties

Let A,BA,B be a n×nn\times n matrix and kk be a constant. The determinant satisfies the following properties:

(a) det(kA)=kndet(A)\det(kA) = k^{n}\det(A)

(b) det(AB)=det(A)det(B)\det(AB) = \det(A)\det(B)

(c) det(AB)=det(BA)\det(AB)=\det(BA)

(d) If AA is an invertible matrix, then det(A1)=1det(A)\det(A^{-1}) = \dfrac{1}{\det(A)}

(e) det(AT)=det(A)\det(A^{T}) = \det(A). Here, ATA^{T} is the transpose of AA.