Arithmetic, Geometric, and Harmonic Means Inequality
📂Lemmas Arithmetic, Geometric, and Harmonic Means Inequality Definitions For n n n positive numbers x 1 , x 2 , ⋯ , x n {x}_1,{x}_2,\cdots,{x}_n x 1 , x 2 , ⋯ , x n , the arithmetic mean, geometric mean, and harmonic mean are defined as:
Arithmetic Mean :
∑ k = 1 n x k n = x 1 + x 2 + ⋯ + x n n
\sum_{ k=1 }^{ n }{ \frac { {x}_k }{ n } }=\frac { {x}_1+{x}_2+\cdots+{x}_n }{ n }
k = 1 ∑ n n x k = n x 1 + x 2 + ⋯ + x n Geometric Mean :
∏ k = 1 n x k 1 n = x 1 x 2 ⋯ x n n
\prod_{ k=1 }^{ n }{ { {x}_k }^{ \frac { 1 }{ n } } }=\sqrt [ n ]{ {x}_1{x}_2\cdots{x}_n }
k = 1 ∏ n x k n 1 = n x 1 x 2 ⋯ x n Harmonic Mean :
( ∑ k = 1 n 1 x k n ) − 1 = n 1 x 1 + 1 x 2 + ⋯ + 1 x n
\left( \frac { \sum_{ k=1 }^{ n }{ \frac { 1 }{ {x}_k } } }{ n } \right)^{-1}=\frac { n }{ \frac { 1 }{ {x}_1 }+\frac { 1 }{ {x}_2 }+\cdots+\frac { 1 }{ {x}_n } }
( n ∑ k = 1 n x k 1 ) − 1 = x 1 1 + x 2 1 + ⋯ + x n 1 n Theorem The following inequality holds for these means:
x 1 + x 2 + ⋯ + x n n ≥ x 1 x 2 ⋯ x n n ≥ n 1 x 1 + 1 x 2 + ⋯ + 1 x n
\frac { {x}_1+{x}_2+\cdots+{x}_n }{ n }\ge \sqrt [ n ]{ {x}_1{x}_2\cdots{x}_n }\ge \frac { n }{ \frac { 1 }{ {x}_1 }+\frac { 1 }{ {x}_2 }+\cdots+\frac { 1 }{ {x}_n } }
n x 1 + x 2 + ⋯ + x n ≥ n x 1 x 2 ⋯ x n ≥ x 1 1 + x 2 1 + ⋯ + x n 1 n
Explanation High school students might have heard about the arithmetic-geometric mean at some point. It is not typically defined by a specific name but is commonly passed down colloquially as “Arith-Geo.” For the case when n = 2 n=2 n = 2 , its proof is simple and useful even for high school level problem solving. A general proof at the high school level requires the intervention of messy expressions using mathematical induction , but instead, a more sophisticated but challenging proof is introduced.
Proof Strategy: Utilizing the following lemma:
Jensen’s Inequality :
If f f f is a convex function and E ( X ) < ∞ E(X) < \infty E ( X ) < ∞ , then the following inequality holds:
E f ( X ) ≥ f E ( X )
E{f(X)}\ge f{E(X)}
E f ( X ) ≥ f E ( X )
Arithmetic-Geometric Let f ( x ) = − ln x f(x)=-\ln x f ( x ) = − ln x , then f f f is convex on the interval ( 0 , ∞ ) (0,\infty ) ( 0 , ∞ ) . Assume that a random variable X X X has the probability mass function
p ( X = x ) = { 1 n , x = x 1 , x 2 , ⋯ , x n 0 , otherwise
p(X=x)=\begin{cases}{1 \over n} & , x={x}_1,{x}_2, \cdots ,{x}_n
\\ 0 & , \text{otherwise}\end{cases}
p ( X = x ) = { n 1 0 , x = x 1 , x 2 , ⋯ , x n , otherwise
Then E ( X ) E(X) E ( X ) is
x 1 + x 2 + … + x n n < ∞
\frac { {x}_1+{x}_2+…+{x}_n }{ n }<\infty
n x 1 + x 2 + … + x n < ∞
hence finite. This satisfies all necessary conditions for Jensen’s inequality, yielding:
E ( − ln X ) ≥ – ln E ( X )
E(-\ln X)\ge –\ln E(X)
E ( − ln X ) ≥ – ln E ( X )
The left-hand side is
E ( − ln X ) = − E ( ln X ) = − 1 n ∑ k = 1 n ln x k = − 1 n ln ∏ k = 1 n x k = − ln ( ∏ k = 1 n x k ) 1 n = − ln ∏ k = 1 n x k 1 n
\begin{align*}
E(-\ln X)&=-E(\ln X)
\\ &=-\frac { 1 }{ n } \sum_{ k=1 }^{ n }{ \ln{x}_k }
\\ &=-\frac { 1 }{ n }\ln \prod_{ k=1 }^{ n }{ {x}_k }
\\ &=-\ln { \left( \prod_{ k=1 }^{ n }{ {x}_k } \right) }^{ \frac { 1 }{ n } }
\\ &=-\ln\prod_{ k=1 }^{ n }{ { {x}_k }^{ \frac { 1 }{ n } } }
\end{align*}
E ( − ln X ) = − E ( ln X ) = − n 1 k = 1 ∑ n ln x k = − n 1 ln k = 1 ∏ n x k = − ln ( k = 1 ∏ n x k ) n 1 = − ln k = 1 ∏ n x k n 1
The right-hand side is
− ln E ( X ) = − ln 1 n ∑ k = 1 n x k
\begin{align*}
-\ln E(X)=-\ln\frac { 1 }{ n }\sum_{ k=1 }^{ n }{ {x}_k }
\end{align*}
− ln E ( X ) = − ln n 1 k = 1 ∑ n x k
Upon rearranging, we get
− ln ∏ k = 1 n x k 1 n ≥ − ln 1 n ∑ k = 1 n x k ⟹ ln 1 n ∑ k = 1 n x k ≥ ln ∏ k = 1 n x k 1 n ⟹ 1 n ∑ k = 1 n x k ≥ ∏ k = 1 n x k 1 n ⟹ x 1 + x 2 + … + x n n ≥ x 1 x 2 … x n n
\begin{align*}
-\ln\prod_{ k=1 }^{ n }{ { {x}_k }^{ \frac { 1 }{ n } } } \ge& -\ln\frac { 1 }{ n }\sum_{ k=1 }^{ n }{ {x}_k }
\\
\implies \ln\frac { 1 }{ n }\sum_{ k=1 }^{ n }{ {x}_k } \ge& \ln\prod_{ k=1 }^{ n }{ { {x}_k }^{ \frac { 1 }{ n } } }
\\
\implies \frac { 1 }{ n }\sum_{ k=1 }^{ n }{ {x}_k } \ge& \prod_{ k=1 }^{ n }{ { {x}_k }^{ \frac { 1 }{ n } } }
\\
\implies \frac { {x}_1+{x}_2+…+{x}_n }{ n } \ge& \sqrt [ n ]{ {x}_1{x}_2…{x}_n }
\end{align*}
− ln k = 1 ∏ n x k n 1 ≥ ⟹ ln n 1 k = 1 ∑ n x k ≥ ⟹ n 1 k = 1 ∑ n x k ≥ ⟹ n x 1 + x 2 + … + x n ≥ − ln n 1 k = 1 ∑ n x k ln k = 1 ∏ n x k n 1 k = 1 ∏ n x k n 1 n x 1 x 2 … x n
■
This proves the inequality between the arithmetic and geometric means. Using this, let’s prove the inequality between the geometric and harmonic means.
Geometric-Harmonic x 1 + x 2 + … + x n n ≥ x 1 x 2 … x n n
\frac { {x}_1+{x}_2+…+{x}_n }{ n }\ge \sqrt [ n ]{ {x}_1{x}_2…{x}_n }
n x 1 + x 2 + … + x n ≥ n x 1 x 2 … x n
By setting x k = 1 y k \displaystyle {x}_k=\frac { 1 }{ {y}_k } x k = y k 1 , we get
1 y 1 + 1 y 2 + … + 1 y n n ≥ 1 y 1 1 y 2 … 1 y n n ⟹ 1 1 y 1 1 y 2 … 1 y n n ≥ n 1 y 1 + 1 y 2 + … + 1 n y n ⟹ y 1 y 2 … y n n ≥ n 1 n y 1 + 1 n y 2 + … + 1 n y n
\begin{align*}
\frac { \frac { 1 }{ {y}_1 }+\frac { 1 }{ {y}_2 }+…+\frac { 1 }{ {y}_n } }{ n }\ge \sqrt [ n ]{ \frac { 1 }{ {y}_1 }\frac { 1 }{ {y}_2 }…\frac { 1 }{ {y}_n } }
\\
\implies \frac { 1 }{ \sqrt [ n ]{ \frac { 1 }{ {y}_1 }\frac { 1 }{ {y}_2 }…\frac { 1 }{ {y}_n } } }\ge \frac { n }{ \frac { 1 }{ {y}_1 }+\frac { 1 }{ {y}_2 }+…+\frac { 1 }{ n{y}_n } }
\\
\implies \sqrt [ n ]{ {y}_1{y}_2…{y}_n }\ge \frac { n }{ \frac { 1 }{ n{y}_1 }+\frac { 1 }{ n{y}_2 }+…+\frac { 1 }{ n{y}_n } }
\end{align*}
n y 1 1 + y 2 1 + … + y n 1 ≥ n y 1 1 y 2 1 … y n 1 ⟹ n y 1 1 y 2 1 … y n 1 1 ≥ y 1 1 + y 2 1 + … + n y n 1 n ⟹ n y 1 y 2 … y n ≥ n y 1 1 + n y 2 1 + … + n y n 1 n
■