logo

Definition of a Normal Matrix 📂Matrix Algebra

Definition of a Normal Matrix

Definition

A square matrix ACn×nA \in \mathbb{C}^{n \times n} is called a normal matrix ▷normal matrix◁ if it satisfies the following condition: AA=AA A A^{\ast} = A^{\ast} A Here, XX^{\ast} is the conjugate transpose of the matrix XX.

Properties

Assume AA is a square matrix. The necessary and sufficient condition for the triangular matrix AA to be a normal matrix is that AA is a diagonal matrix: AA=AA    (A)ij=0,ij A A^{\ast} = A^{\ast} A \iff \left( A \right)_{ij} = 0 , \forall i \ne j

Proof 1

  • OnO_{n} is the zero matrix with (n×n)\left( n \times n \right) size. If subscripts are omitted, the size matches that of the matrix inside.
  • zˉ\bar{z} is the complex conjugate of the complex number zz.

(    )(\implies)

We prove this using mathematical induction. Without loss of generality, let’s consider only the case where ACn×nA \in \mathbb{C}^{n \times n} is an upper triangular matrix.

If n=1n = 1, it trivially holds, and if n=2n = 2, then for the upper triangular matrix A=[ab0c] A = \begin{bmatrix} a & b \\ 0 & c \end{bmatrix} we have O2=AAAA=[ab0c][aˉ0bˉcˉ][aˉ0bˉcˉ][ab0c]=[a2+b2bccbˉc2][a2aˉbabˉb2+c2]=[b2b(caˉ)bˉ(ca)b2] \begin{align*} & O_{2} \\ =& A A^{\ast} - A^{\ast} A \\ =& \begin{bmatrix} a & b \\ 0 & c \end{bmatrix} \begin{bmatrix} \bar{a} & 0 \\ \bar{b} & \bar{c} \end{bmatrix} - \begin{bmatrix} \bar{a} & 0 \\ \bar{b} & \bar{c} \end{bmatrix} \begin{bmatrix} a & b \\ 0 & c \end{bmatrix} \\ =& \begin{bmatrix} |a|^{2} + |b|^{2} & bc \\ c \bar{b} & |c|^{2} \end{bmatrix} - \begin{bmatrix} |a|^{2} & \bar{a} b \\ a \bar{b} & |b|^{2} + |c|^{2} \end{bmatrix} \\ =& \begin{bmatrix} |b|^{2} & b \left( c - \bar{a} \right) \\ \bar{b} \left( c - a \right) & - |b|^{2} \end{bmatrix} \end{align*} which implies b=0b = 0. In other words, AA is a diagonal matrix. Now assume that AA=AA    (A)ij=0,ij A A^{\ast} = A^{\ast} A \implies \left( A \right)_{ij} = 0 , \forall i \ne j holds for AC(n1)×(n1)A \in \mathbb{C}^{(n-1) \times (n-1)}. Using two matrices BR1×(n1)B \in \mathbb{R}^{1 \times (n-1)} and CC(n1)×(n1)C \in \mathbb{C}^{(n-1) \times (n-1)}, expressed in terms of block matrices, A=[aBOC] A = \begin{bmatrix} a & B \\ O & C \end{bmatrix} we have On=AAAA=[aBOC][aˉOBC][aˉOBC][aBOC]=[a2+BBBCCBCC][a2aˉBaBBB+CC]=[BBBCaˉBCBaBCCCCBB] \begin{align*} & O_{n} \\ =& A A^{\ast} - A^{\ast} A \\ =& \begin{bmatrix} a & B \\ O & C \end{bmatrix} \begin{bmatrix} \bar{a} & O \\ B^{\ast} & C^{\ast} \end{bmatrix} - \begin{bmatrix} \bar{a} & O \\ B^{\ast} & C^{\ast} \end{bmatrix} \begin{bmatrix} a & B \\ O & C \end{bmatrix} \\ =& \begin{bmatrix} |a|^{2} + B B^{\ast} & B C \\ C B^{\ast} & C C^{\ast} \end{bmatrix} - \begin{bmatrix} |a|^{2} & \bar{a} B \\ a B^{\ast} & B^{\ast} B + C^{\ast} C \end{bmatrix} \\ =& \begin{bmatrix} B B^{\ast} & B C - \bar{a} B \\ C B^{\ast} - a B^{\ast} & C C^{\ast} - C^{\ast} C - B^{\ast} B \end{bmatrix} \end{align*} and the condition BB=k=1n1(B1k)2C1×1B B^{\ast} = \sum_{k=1}^{n-1} \left( B_{1k} \right)^{2} \in \mathbb{C}^{1 \times 1} that 00 implies that all components of BB equal 00. Meanwhile, CCCC=On1C C^{\ast} - C^{\ast} C = O_{n-1} must also hold, making CC a normal matrix, and hence CC must also be a diagonal matrix. Consequently, the matrix AA defined as follows is a diagonal matrix. A=[aBOC]=[aOOC] A = \begin{bmatrix} a & B \\ O & C \end{bmatrix} = \begin{bmatrix} a & O^{\ast} \\ O & C \end{bmatrix}

(    )(\impliedby)

If AA is a diagonal matrix, then the following trivially holds for k=1,,nk = 1 , \cdots , n: (AA)kk=(A)kk2=(AA)kk \left( A A^{\ast} \right)_{kk} = \left( A \right)_{kk}^{2} = \left( A^{\ast} A \right)_{kk}


  1. Ken Duna, If AA is normal and upper triangular then it is diagonal, URL (version: 2020-04-28): https://math.stackexchange.com/q/1763100 ↩︎