Derivation of Pascal's Identity
Formula 1
The following binomial identity holds. $$ \binom{n}{k} + \binom{n}{k+1} = \binom{n+1}{k+1} $$
Derivation
$$ \begin{align*} & \binom{n}{k} + \binom{n}{k+1} \\ =& {\frac{ n! }{ k! (n-k)! }} + {\frac{ n! }{ (k+1)! (n-k-1)! }} \\ =& {\frac{ n! (k+1) }{ (k+1)! (n-k)! }} + {\frac{ n! (n-k) }{ (k+1)! (n-k)! }} \\ =& {\frac{ n! (k+1) + n! (n-k) }{ (k+1)! (n-k)! }} \\ =& {\frac{ n! (n+1) }{ (k+1)! (n-k)! }} \\ =& \binom{n+1}{k+1} \end{align*} $$
■
Bóna, M. (2025). Introduction to enumerative and analytic combinatorics: p27. ↩︎