logo

Properties of the Main Diagonal Elements of Positive Definite Matrices 📂Matrix Algebra

Properties of the Main Diagonal Elements of Positive Definite Matrices

Theorem

Suppose a positive definite matrix is given as A=(aij)Cn×nA = \left( a_{ij} \right) \in \mathbb{C}^{n \times n}.

Sign of the Main Diagonal Elements

The sign of the main diagonal elements in AA, denoted as aiia_{ii}, is the same as the sign of AA.

  • If AA is positive definite, then aii>0a_{ii} > 0
  • If AA is positive semidefinite, then aii0a_{ii} \ge 0
  • If AA is negative definite, then aii<0a_{ii} < 0
  • If AA is negative semidefinite, then aii0a_{ii} \le 0

Main Diagonal Elements in Symmetric Real Matrix satisfying 00

Suppose a semidefinite matrix ARn×nA \in \mathbb{R}^{n \times n} is a symmetric matrix composed of real numbers. If the main diagonal components aiia_{ii} of AA satisfy 00, then the ii-th row and column are zero vectors.

Explanation

This property is used in the proof of the Hogg-Craig theorem.

Proof

Without loss of generality, let us assume AA is positive semidefinite.

The fact that matrix AA is positive semidefinite means that for every vector xRn\mathbf{x} \in \mathbb{R}^{n}, xTAx0\mathbf{x}^{T} A \mathbf{x} \ge 0 holds, hence the quadratic form with respect to standard basis vectors x=e1,,enx = \mathbf{e}_{1} , \cdots , \mathbf{e}_{n} must also be greater than or equal to 00. Therefore, since eiTAei0\mathbf{e}_{i}^{T} A \mathbf{e}_{i} \ge 0, all main diagonal elements (A)ii\left( A \right)_{ii} of AA must also be greater than or equal to 00.


Now, assume AA is ARn×nA \in \mathbb{R}^{n \times n} and a symmetric matrix, and let the real number be xx and the index be jij \ne i such that x:=ei+xej\mathbf{x} := \mathbf{e}_{i} + x \mathbf{e}_{j}. If aii=0a_{ii} = 0 is 00, then xTAx0\mathbf{x}^{T} A \mathbf{x} \ge 0 must hold, leading to: xTAx=(ei+xej)TA(ei+xej)=eiTAei+xeiTAej+xejTAei+x2ejTAej=aii+xaij+xaji+x2ajj=2xaij+x2ajj0 \begin{align*} & \mathbf{x}^{T} A \mathbf{x} \\ =& \left( \mathbf{e}_{i} + x \mathbf{e}_{j} \right)^{T} A \left( \mathbf{e}_{i} + x \mathbf{e}_{j} \right) \\ =& \mathbf{e}_{i}^{T} A \mathbf{e}_{i} + x \mathbf{e}_{i}^{T} A \mathbf{e}_{j} + x \mathbf{e}_{j}^{T} A \mathbf{e}_{i} + x^{2} \mathbf{e}_{j}^{T} A \mathbf{e}_{j} \\ =& a_{ii} + x a_{ij} + x a_{ji} + x^{2} a_{jj} \\ =& 2 x a_{ij} + x^{2} a_{jj} \\ \ge & 0 \end{align*}

Quadratic Formula: For the quadratic equation ax2+bx+c=0ax^{2}+bx+c=0 (where a0a\neq 0), x=b±b24ac2a x=\dfrac{ -b\pm \sqrt { b^{2}-4ac } }{2a}

Assuming AA is a positive semidefinite matrix implies ajj0a_{jj} \ge 0. The statement 2xaij+x2ajj02 x a_{ij} + x^{2} a_{jj} \ge 0 implies that the graph of the downward convex parabola represented by the quadratic function f(x)=ajjx2+2aijxf(x) = a_{jj} x^{2} + 2 a_{ij} x does not meet the xx-axis or meets it at only one point, which, through the discriminant, indicates b24ac0b^{2} - 4ac \le 0. Substituting ff into the discriminant gives: (2aij)24ajj00 \left( 2 a_{ij} \right)^{2} - 4 \cdot a_{jj} \cdot 0 \le 0 According to this, the only case satisfying 4aij204 a_{ij}^{2} \le 0 is aij=0a_{ij} = 0. This holds regardless of the choice of jj, therefore ai1==ain=0a_{i1} = \cdots = a_{in} = 0, and since AA is a symmetric matrix, a1i==ani=0a_{1i} = \cdots = a_{ni} = 0 as well.