logo

Prove that the trace of powers of a diagonalizable matrix is equal to the sum of powers of its eigenvalues 📂Matrix Algebra

Prove that the trace of powers of a diagonalizable matrix is equal to the sum of powers of its eigenvalues

Theorem

Suppose a diagonalizable matrix ACn×nA \in \mathbb{C}^{n \times n} and a natural number kNk \in \mathbb{N} are given. Let the eigenvalue of AA be λ1,,λn\lambda_{1} , \cdots , \lambda_{n}, then the following holds. trAk=i=1nλik \operatorname{tr} A^{k} = \sum_{i=1}^{n} \lambda_{i}^{k} Here, tr\operatorname{tr} is the trace.

Explanation

Although it is not quite a corollary, it is useful to note that when ARn×nA \in \mathbb{R}^{n \times n} is a symmetric matrix, the trace of A2A^{2} equals the sum of the squares of the elements of AA. i=1nj=1nAij2=trAAT=trA2=i=1nλi2 \sum_{i=1}^{n} \sum_{j=1}^{n} A_{ij}^{2} = \operatorname{tr} A A^{T} = \tr A^{2} = \sum_{i=1}^{n} \lambda_{i}^{2} In fact, this is used in the proof of Craig’s theorem.

Proof 1

Let QQ be a unitary matrix and diag(λ1,,λn)\diag \left( \lambda_{1} , \cdots , \lambda_{n} \right) be a diagonal matrix, then let A=QΛQA = Q \Lambda Q^{\ast}.

Cyclic property of the trace: tr(ABC)=tr(BCA)=tr(CAB) \operatorname{tr} (ABC) = \operatorname{tr} (BCA) = \operatorname{tr} (CAB)

trAk=trQΛQQΛQ=trQΛkQ=trQQΛk=trIΛk=i=1nλik \begin{align*} \operatorname{tr} A^{k} =& \operatorname{tr} Q \Lambda Q^{\ast} \cdots Q \Lambda Q^{\ast} \\ =& \operatorname{tr} Q \Lambda^{k} Q^{\ast} \\ =& \operatorname{tr} Q^{\ast} Q \Lambda^{k} \\ =& \operatorname{tr} I \Lambda^{k} \\ =& \sum_{i=1}^{n} \lambda_{i}^{k} \end{align*}


  1. Ahmad Bazzi, Sum of squared eigenvalues of AA equals tr(A2)\operatorname{tr}(A^2)?, URL (version: 2018-07-31): https://math.stackexchange.com/q/2867594 ↩︎