logo

Dynamics in Atopic dermatitis Systems 📂Dynamics

Dynamics in Atopic dermatitis Systems

Model

The following nonsmooth dynamic system is referred to as the Atopic dermatitis System. dP(t)dt=PenvκP1+γBB(t)αIR(t)P(t)δPP(t)dB(t)dt=κB[1B(t)][1+γRR(t)][1+γGG(t)]δBK(t)B(t)dD(t)dt=κDR(t)δDD(t) \begin{align*} {{ d P (t) } \over { d t }} =& {{ P_{\text{env}} \kappa_{P} } \over { 1 + \gamma_{B} B (t) }} - \alpha_{I} R(t) P(t) - \delta_{P} P (t) \\ {{ d B (t) } \over { d t }} =& {{ \kappa_{B} \left[ 1 - B(t) \right] } \over { \left[ 1 + \gamma_{R} R(t) \right] \left[ 1 + \gamma_{G} G(t) \right] }} - \delta_{B} K(t) B(t) \\ {{ d D (t) } \over { d t }} =& \kappa_{D} R(t) - \delta_{D} D(t) \end{align*} This system is controlled by two types of switches: the reversible switch RR and the irreversible switch GG. R(t)={Roff,if P(t)<P or PP(t)P+,R(tdt)=RoffRon,if P(t)>P+ or PP(t)P+,R(tdt)=RonG(t)={Goff,if D(t)<D+ and G(tdt)=GoffGon,if D(t)D+ or G(tdt)=Gon \begin{align*} R (t) =& \begin{cases} R_{\text{off}} & , \text{if } P(t) < P^{-} \text{ or } P^{-} \le P (t) \le P^{+} , R (t - dt) = R_{\text{off}} \\ R_{\text{on}} & , \text{if } P(t) > P^{+} \text{ or } P^{-} \le P (t) \le P^{+} , R (t - dt) = R_{\text{on}} \end{cases} \\ G (t) =& \begin{cases} G_{\text{off}} & , \text{if } D(t) < D^{+} \text{ and } G (t - dt) = G_{\text{off}} \\ G_{\text{on}} & , \text{if } D(t) \ge D^{+} \text{ or } G (t - dt) = G_{\text{on}} \end{cases} \end{align*} Here, dt0dt \approx 0 represents a very short time interval. According to the RR-switch, K(t)K(t) is given as follows. K(t)={Koff,if R(t)=RoffmonP(t)βon,if R(t)=Ron K(t) = \begin{cases} K_{\text{off}} & , \text{if } R(t) = R_{\text{off}} \\ m_{\text{on}} P(t) - \beta_{\text{on}} & , \text{if } R(t) = R_{\text{on}} \end{cases}

Variables

  • P(t)P(t): The amount of pathogen infiltrated. It is affected by the given environment PenvP_{\text{env}} and is reduced as the skin barrier strengthens.
  • B(t)[0,1]B(t) \in \left[ 0, 1 \right]: The strength of the Barrier. Closer to 11 indicates a healthier skin condition, while closer to 00 indicates a poorer skin condition.
  • D(t)D(t): The concentration of Dendritic Cells in lymph nodes. If this value exceeds a certain level, the GG-switch is turned on.
  • R(t)R(t): The sensitivity of receptors characterizing the RR-switch. It activates when pathogen P(t)P(t) exceeds a certain level, contributes to reducing P(t)P(t), and also damages the skin barrier. It turns off when P(t)P(t) decreases below a certain level, making it a reversible switch.
  • G(t)G(t): Involved in immune regulation, the GG-switch. It turns on when D(t)D(t) exceeds the manageable limit D+D^{+} and remains on permanently. Once the GG-switch is activated, it negatively affects the skin barrier’s ability to recover permanently.
  • K(t)K(t): The amount of Kallikrein, an enzyme that releases kinins from the plasma. It activates when the RR-switch is on, damaging the skin barrier.

Parameters

Description

Mathematical modeling of Atopic dermatitis or Atopic Eczema was proposed in a paper by Elisa Domínguez-Hüttinger et al., published in the Journal of Allergy and Clinical Immunology (JACI)1, and has been a subject of ongoing research by the Tanaka group2 and actively researched in Korea by Dr. Kang Yoseph and others3.

The Two Switches

While the RR-switch and the GG-switch may look complicated in their mathematical expressions, they can be simplified into the form shown above when drawn. Due to both the values of PP and DD and the state of the switches at that moment, the AD system is not strictly defined by a vector field but becomes a piecewise smooth system3. Depending on the on/off state of the two switches, there are four possible scenarios, each of which can be represented as four smooth subsystems.

S1S_{1}-Subsystem: RoffR_{\text{off}}, GoffG_{\text{off}}

dP(t)dt=PenvκP1+γBB(t)δPP(t)dB(t)dt=κB[1B(t)]dD(t)dt=δDD(t) \begin{align*} {{ d P (t) } \over { d t }} =& {{ P_{\text{env}} \kappa_{P} } \over { 1 + \gamma_{B} B (t) }} - \delta_{P} P (t) \\ {{ d B (t) } \over { d t }} =& \kappa_{B} \left[ 1 - B(t) \right] \\ {{ d D (t) } \over { d t }} =& - \delta_{D} D(t) \end{align*}

S2S_{2}-Subsystem: RoffR_{\text{off}}, GonG_{\text{on}}

dP(t)dt=PenvκP1+γBB(t)δPP(t)dB(t)dt=κB[1B(t)][1+γGGon]dD(t)dt=δDD(t) \begin{align*} {{ d P (t) } \over { d t }} =& {{ P_{\text{env}} \kappa_{P} } \over { 1 + \gamma_{B} B (t) }} - \delta_{P} P (t) \\ {{ d B (t) } \over { d t }} =& {{ \kappa_{B} \left[ 1 - B(t) \right] } \over { \left[ 1 + \gamma_{G} G_{\text{on}} \right] }} \\ {{ d D (t) } \over { d t }} =& - \delta_{D} D(t) \end{align*}

S3S_{3}-Subsystem: RonR_{\text{on}}, GoffG_{\text{off}}

dP(t)dt=PenvκP1+γBB(t)αIRon(t)P(t)δPP(t)dB(t)dt=κB[1B(t)][1+γRRon(t)]δB(monP(t)βon)B(t)dD(t)dt=κDRon(t)δDD(t) \begin{align*} {{ d P (t) } \over { d t }} =& {{ P_{\text{env}} \kappa_{P} } \over { 1 + \gamma_{B} B (t) }} - \alpha_{I} R_{\text{on}}(t) P(t) - \delta_{P} P (t) \\ {{ d B (t) } \over { d t }} =& {{ \kappa_{B} \left[ 1 - B(t) \right] } \over { \left[ 1 + \gamma_{R} R_{\text{on}}(t) \right] }} - \delta_{B} \left( m_{\text{on}} P(t) - \beta_{\text{on}} \right) B(t) \\ {{ d D (t) } \over { d t }} =& \kappa_{D} R_{\text{on}}(t) - \delta_{D} D(t) \end{align*}

S4S_{4}-Subsystem: RonR_{\text{on}}, GonG_{\text{on}}

dP(t)dt=PenvκP1+γBB(t)αIRon(t)P(t)δPP(t)dB(t)dt=κB[1B(t)][1+γRRon(t)][1+γGGon(t)]δB(monP(t)βon)B(t)dD(t)dt=κDRon(t)δDD(t) \begin{align*} {{ d P (t) } \over { d t }} =& {{ P_{\text{env}} \kappa_{P} } \over { 1 + \gamma_{B} B (t) }} - \alpha_{I} R_{\text{on}}(t) P(t) - \delta_{P} P (t) \\ {{ d B (t) } \over { d t }} =& {{ \kappa_{B} \left[ 1 - B(t) \right] } \over { \left[ 1 + \gamma_{R} R_{\text{on}}(t) \right] \left[ 1 + \gamma_{G} G_{\text{on}}(t) \right] }} - \delta_{B} \left( m_{\text{on}} P(t) - \beta_{\text{on}} \right) B(t) \\ {{ d D (t) } \over { d t }} =& \kappa_{D} R_{\text{on}}(t) - \delta_{D} D(t) \end{align*}

Bifurcation

The Codimension-2 bifurcation diagram for the two parameters Barrier permeability κP\kappa_{P} and Immune responses αI\alpha_{I} is shown above. The time evolutions within each of the four regions of the diagram can be broadly categorized into four types.

  • (1) Converging to a stable point where the skin barrier fully recovers limtB(t)=1\displaystyle \lim_{t \to \infty} B(t) = 1
  • (4) Converging to a stable point where the skin barrier sustains chronic damage limtB(t)=0\displaystyle \lim_{t \to \infty} B(t) = 0
  • (2) Depending on the initial conditions, either recovering or sustaining chronic damage, bistability
  • (3) Oscillating oscillation between [0,1][0,1] where the condition of the skin barrier B(t)B(t) fluctuates between improvement and deterioration

This can be seen as a dynamical analysis of the progression of atopy based on innate conditions κP\kappa_{P}, αI\alpha_{I}, and given circumstances. Subsequent studies have drawn more detailed bifurcation diagrams or have identified oscillations subdivided into mild and severe for precision analysis.


  1. Domínguez-Hüttinger, E., Christodoulides, P., Miyauchi, K., Irvine, A. D., Okada-Hatakeyama, M., Kubo, M., & Tanaka, R. J. (2017). Mathematical modeling of atopic dermatitis reveals “double-switch” mechanisms underlying 4 common disease phenotypes. Journal of Allergy and Clinical Immunology, 139(6), 1861-1872. https://doi.org/10.1016/j.jaci.2016.10.026 ↩︎

  2. Tanaka, G., Domínguez-Hüttinger, E., Christodoulides, P., Aihara, K., & Tanaka, R. J. (2018). Bifurcation analysis of a mathematical model of atopic dermatitis to determine patient-specific effects of treatments on dynamic phenotypes. Journal of Theoretical Biology, 448, 66-79. https://doi.org/10.1016/j.jtbi.2018.04.002 ↩︎

  3. Kang, Y., Lee, E. H., Kim, S. H., Jang, Y. H., & Do, Y. (2021). Complexity and multistability of a nonsmooth atopic dermatitis system. Chaos, Solitons & Fractals, 153, 111575. https://doi.org/10.1016/j.chaos.2021.111575 ↩︎ ↩︎