logo

Nonsymmetric F-distribution 📂Probability Distribution

Nonsymmetric F-distribution

Definition

Singly Non-central F-distribution 1

The degrees of freedom r1,r2>0r_{1} , r_{2} > 0 and non-centrality λ10\lambda_{1} \ge 0 define the probability density function of a continuous probability distribution F(r1,r2,λ1)F \left( r_{1} , r_{2} , \lambda_{1} \right), known as the Singly Non-central F-distribution.

f(x)=k=0eλ/2(λ/2)kB(r22,r12+k)k!(r1r2)r12+k(r2r1x+r2)r1+r22+kxr121+k,x0 f(x) = \sum_{k=0}^{\infty} {{ e^{ - \lambda / 2 } \left( \lambda / 2 \right)^{k} } \over { B \left( {{ r_{2} } \over { 2 }} , {{ r_{1} } \over { 2 }} + k \right) k ! }} \left( {{ r_{1} } \over { r_{2} }} \right)^{{{ r_{1} } \over { 2 }} + k} \left( {{ r_{2} } \over { r_{1} x + r_{2} }} \right) ^{{{ r_{1} + r_{2} } \over { 2 }} + k} x^{{{ r_{1} } \over { 2 }} - 1 + k} \qquad , x \ge 0

Doubly Non-central F-distribution 2

The degrees of freedom r1,r2>0r_{1} , r_{2} > 0 and non-centrality λ1,λ20\lambda_{1}, \lambda_{2} \ge 0 define the probability density function of a continuous probability distribution F(r1,r2,λ1,λ2)F \left( r_{1} , r_{2} , \lambda_{1}, \lambda_{2} \right), known as the Doubly Non-central F-distribution.

f(x)=k=0l=0n1k+r12n2l+r22xk+n121λ1kλ2l2k+lk!!eλ1+λ22B(k+12r1,l+12r2),x0 f(x) = \sum_{k=0}^{\infty} \sum_{l=0}^{\infty} {{ n_{1}^{k + {{ r_{1} } \over { 2 }}} n_{2}^{l + {{ r_{2} } \over { 2 }}} x^{k + {{ n_{1} } \over { 2 }} - 1 } \lambda_{1}^{k} \lambda_{2}^{l} } \over { 2^{k+l} k!! e^{{{ \lambda_{1} + \lambda_{2} } \over { 2 }}} B \left( k + {{ 1 } \over { 2 }} r_{1} , l + {{ 1 } \over { 2 }} r_{2} \right) }} \qquad , x \ge 0


Description

The non-central F-distribution is a generalization of the F-distribution, where the singly form involves only the numerator, while the doubly form involves both the numerator and denominator following the non-central chi-squared distribution. The term non-centrality originates from the intuitive derivation of the non-central chi-squared distribution, where the mean of the random variables following the normal distribution is not 00.

Derivation from the non-central chi-squared distribution

Let XX follow the non-central chi-squared distribution χ2(r1,λ1)\chi^{2} \left( r_{1} , \lambda_{1} \right) and YY follow the chi-squared distribution χ2(r2)\chi^{2} \left( r_{2} \right). Then, X/r1Y/r2 {{ X / r_{1} } \over { Y / r_{2} }} follows the singly non-central F-distribution. If Yχ2(r2,λ2)Y \sim \chi^{2} \left( r_{2} , \lambda_{2} \right), then the random variable follows the doubly non-central F-distribution. In other words, if only the numerator follows the non-central chi-squared distribution, it is singly; if both numerator and denominator do, it is doubly.

See Also

F-distribution

non-central chi-squared distribution


  1. Kay. (1998). Fundamentals of Statistical Signal Processing: Detection Theory: p29 ↩︎

  2. https://mathworld.wolfram.com/NoncentralF-Distribution.html ↩︎