logo

Lorentz Transformation Derivation 📂Physics

Lorentz Transformation Derivation

Derivation

  • The text might be a bit long, but it’s written very simply, so don’t be afraid to dive in.

Let’s think about light (photon) moving in the plane of xyxy inertial system (coordinate system) when t=0t=0. It starts from the origin and is advancing at an angle of θ\theta with the xx axis.

59D74D2E2.jpg

The new transformation that will replace the Galilean transformation can be said to look like the following.

(txyz)=()(tctcosθctsinθ0) \begin{pmatrix} t^{\prime} \\ x^{\prime} \\ y^{\prime} \\ z^{\prime} \end{pmatrix} = \begin{pmatrix} & & & \\ & & & \\ & & & \\ & & & \end{pmatrix} \begin{pmatrix} t \\ ct\cos\theta \\ ct\sin\theta \\ 0 \end{pmatrix}

Before finding the new transformation, let’s first consider the Galilean transformation.

(txyz)=(1000v010000100001)(txyz) \begin{pmatrix} t^{\prime} \\ x^{\prime} \\ y^{\prime} \\ z^{\prime} \end{pmatrix} = \begin{pmatrix} \color{red}1 & \color{red}0 & 0 & 0 \\ \color{red}{-v_{0}} & \color{red}1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{pmatrix} \begin{pmatrix} t \\ x \\ y \\ z \end{pmatrix}

Here, let’s assume that our desired transformation, like the Galilean transformation, does not affect the direction that is not moving. That is, since the AA^{\prime} inertial system is moving in the direction of xx, let’s say that yy, zz components are not affected. Then, the new transformation we want is only the red parts changing from the Galilean transformation. Therefore, let’s state the new transformation as the following.

(txyz)=(ab00ed0000100001)(tctcosθctsinθ0) \begin{equation} \begin{pmatrix} t^{\prime} \\ x^{\prime} \\ y^{\prime} \\ z^{\prime} \end{pmatrix} = \begin{pmatrix} a & b & 0 & 0 \\ e & d & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{pmatrix} \begin{pmatrix} t \\ ct\cos\theta \\ ct\sin\theta \\ 0 \end{pmatrix} \label{eq1} \end{equation}

In alphabetical order, it’s natural for cc to come into the place of ee, but ee is used since cc is used for the speed of light. Now, from the given conditions, we need to find aa, bb, ee, dd. Solving the matrix yields the following.

t=at+bctcosθx=et+dctcosθy=ctsinθz=0 \begin{align} t^{\prime} &= at+bct\cos\theta \label{eq2} \\ x^{\prime} &= et+dct\cos\theta \label{eq3} \\ y^{\prime} &= ct\sin\theta \label{eq4} \\ z^{\prime} &= 0 \nonumber \end{align}

Rearranging (2)(2) for tt yields the following.

t=ta+bccosθ t = \frac{t^{\prime}}{a+bc\cos\theta}

Inserting this into (3),(3), (4)(4) yields the following.

x=e+dccosθa+bccosθty=csinθa+bccosθt \begin{align*} x^{\prime} &= \frac{e+dc\cos\theta}{a+bc\cos\theta}t^{\prime} \\ y^{\prime} &= \frac{c\sin\theta}{a+bc\cos\theta}t^{\prime} \end{align*}

According to the theory of relativity, the speed of this light must be cc in both AA system and in AA^{\prime} system. This can be expressed by the following formula.

vx2+vy2+vz2=c2 \begin{align} {v^{\prime}_{x}} ^{2}+{v^{\prime}_{y}} ^{2}+{v^{\prime}_{z}} ^{2}=c^2 \label{eq5} \end{align}

Using xx^{\prime}, yy^{\prime} obtained above to calculate vxv_{x}^{\prime}, vyv_{y}^{\prime} yields the following.

vx=dxdt=e+dccosθa+bccosθvy=dydt=csinθa+bccosθvz=0 \begin{align*} v^{\prime}_{x} &= \frac{dx^{\prime}}{dt^{\prime}}=\frac{e+dc\cos\theta}{a+bc\cos\theta} \\ v^{\prime}_{y} &= \frac{dy^{\prime}}{dt^{\prime}}=\frac{c\sin\theta}{a+bc\cos\theta} \\ v^{\prime}_{z} &= 0 \end{align*}

Inserting these three equations into (5)(5) yields the following.

(e+dccosθa+bccosθ)2+(csinθa+bccosθ)2=c2    (e+dccosθ)2+c2sin2θ=c2(a+bccosθ)2    e2+2edccosθ+d2c2cos2θ+c2sin2θ=c2a2+2abc3cosθ+b2c4cos2θ    e2+2edccosθ+d2c2cos2θ+c2c2cos2θ=c2a2+2abc3cosθ+b2c4cos2θ \begin{align*} && \left( \frac{e+dc\cos\theta}{a+bc\cos\theta} \right)^{2} + \left( \frac{c\sin\theta}{a+bc\cos\theta} \right) ^{2} &= c^{2} \\ \implies && (e+dc\cos\theta)^{2} + c^{2}\sin^{2}\theta &= c^{2}(a+bc\cos\theta)^{2} \\ \implies && e^{2}+2edc\cos\theta + d^2c^{2}\cos^{2}\theta + {\color{blue}c^{2}\sin^{2}\theta} &= c^2a^{2}+2abc^3\cos\theta+b^2c^4\cos^{2}\theta \\ \implies && e^{2}+2edc\cos\theta + d^2c^{2}\cos^{2}\theta + {\color{blue}c^{2}-c^{2}\cos^{2}\theta} &= c^2a^{2} + 2abc^3\cos\theta + b^2c^4\cos^{2}\theta \end{align*}

Grouping the above formula for cosθ\cos\theta yields the following.

c2(d21)cos2θ+2edccosθ+(e2+c2)=b2c4cos2θ+2abc3cosθ+a2c2 c^{2}(d^{2}-1)\cos^{2}\theta + 2edc\cos\theta + (e^{2}+c^{2}) = b^2c^4\cos^{2}\theta + 2abc^3\cos\theta + a^2c^{2}

Therefore, both sides must have the same constant term, coefficient of the first term, and the coefficient of the second term, resulting in the following formula.

e2+c2=a2c22edc=2abc3    ed=abc2c2(d21)=b2c4    d21=b2c2 \begin{align} e^{2}+c^{2} & =a^{2}c^{2} \\ 2edc=2abc^3 \quad &\implies \quad ed = abc^{2} \\ c^{2}(d^{2}-1) = b^{2}c^{4} \quad & \implies \quad d^{2}-1=b^{2}c^{2} \end{align}

While we have obtained three conditions, (6)(6), (7)(7), (8)(8), since we have 44 unknowns to find, we need one more condition. The other equation can be found from the condition when the particle is stationary. The transformation equation for a particle stationary at the origin of the AA system is the following.

(txyz)=(ab00ed0000100001)(t000)=(atet00)=(tv0t00) \begin{pmatrix} t^{\prime} \\ x^{\prime} \\ y^{\prime} \\ z^{\prime} \end{pmatrix} = \begin{pmatrix} a & b & 0 & 0 \\ e & d & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{pmatrix} \begin{pmatrix} t \\ 0 \\ 0 \\ 0 \end{pmatrix} = \begin{pmatrix} at \\ et \\ 0 \\ 0 \end{pmatrix} =\begin{pmatrix} t^{\prime} \\ -v_{0}t^{\prime} \\ 0 \\ 0 \end{pmatrix}

Therefore, we obtain the following equation.

t=atet=v0t=v0at \begin{align*} t^{\prime} &= at \\ et &= -v_{0}t^{\prime}=-v_{0}at \end{align*}

Then, we obtain the following equation.

e=v0a \begin{align} e = -v_{0}a \label{eq9} \end{align}

If the velocity of the AA^{\prime} system is 00, then because the world line of the AA system and the AA^{\prime} system are the same, the transformation is as follows.

(txyz)=(1000010000100001)(txyz) \begin{pmatrix} t^{\prime} \\ x^{\prime} \\ y^{\prime} \\ z^{\prime} \end{pmatrix} = \begin{pmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{pmatrix} \begin{pmatrix} t \\ x \\ y \\ z \end{pmatrix}

Therefore, when v0=0v_{0}=0, we obtain the following equation.

a=1,b=0,e=0,d=1 \begin{align} a=1,\quad b=0,\quad e=0,\quad d=1 \label{eq10} \end{align}

Inserting (9)(9) into (6)(6) under the above conditions yields the following.

v02a2+c2=c2a2    a2=c2c2v02    a=±cc2v02 \begin{align*} && \quad{v_{0}}^{2} a^{2}+c^{2} &= c^{2} a^{2} \\ \implies && a^{2} &= \frac{c^{2}}{c^{2}-{v_{0}}^{2}} \\ \implies && a &= \pm\frac{c}{\sqrt{c^{2}-{v_{0}}^{2}}} \end{align*}

When v0=0v_{0}=0 by (10)(10), a=1a=1, therefore it is as follows.

a=cc2v02 a=\frac{c}{\sqrt{c^{2}-{v_{0}}^{2}}}

Inserting the aa obtained above into (9)(9) yields the following.

e=v0cc2v02 e = -v_{0}\frac{c}{\sqrt{c^{2}-{v_{0}}^{2}}}

Inserting (9)(9) into (7)(7) yields the following.

ed=abc2    v0ad=abc2    d=bc2v0 \begin{align} && ed &= abc^{2} \nonumber \\ \implies && -v_{0} ad &= abc^{2} \nonumber \\ \implies && d &= \frac{bc^{2}}{{-v_{0}}} \end{align}

Inserting the dd obtained above into (8)(8) yields the following.

b2c4v021=b2c2    b2c4v02b2c2=1    b2c2v02(c2v02)=1    b2=v02c2(c2v02)    b=±v0cc2v02 \begin{align*} && \frac{b^2c^4}{{v_{0}}^{2}}-1 &= b^2c^{2} \\ \implies && \frac{b^2c^4}{{v_{0}}^{2}}-b^2c^{2} &= 1 \\ \implies && \frac{b^2c^{2}}{{v_{0}}^{2}}{(c^{2}-{v_{0}}^{2})} &= 1 \\ \implies && b^{2}&= \frac{{v_{0}}^{2}}{c^{2}(c^{2}-{v_{0}}^{2})} \\ \implies && b &= \pm\frac{v_{0}}{c\sqrt{c2-{v_{0}}^{2}}} \end{align*}

Inserting this again into (11)(11) yields the following.

d=bv0c2=c2v0v0cc2v02=cc2v02 d=-\frac{b}{v_{0}}c^{2}=\mp \frac{c^{2}}{v_{0}}\frac{v_{0}}{c\sqrt{c^{2}-{v_{0}}^{2}}}=\mp \frac{c}{\sqrt{c^{2}-{v_{0}}^{2}}}

When v0=0v_{0}=0 by (10)(10), since d=1d=1, it is as follows.

d=cc2v02b=v0cc2v02 \begin{align*} d &= \frac{c}{\sqrt{c^{2}-{v_{0}}^{2}}} \\ b &= -\frac{v_{0}}{c\sqrt{c^{2}-{v_{0}}^{2}}} \end{align*}

Organizing the obtained a,b,c,da, b, c, d yields the following equation.

a=cc2v02,b=v0cc2v02e=v0cc2v02,d=cc2v02 \begin{align*} a &= \frac{c}{\sqrt{c^{2}-{v_{0}}^{2}}}, & b &= -\frac{v_{0}}{c\sqrt{c^{2}-{v_{0}}^{2}}} \\ e &= -v_{0}\frac{c}{\sqrt{c^{2}-{v_{0}}^{2}}}, & d &= \frac{c}{\sqrt{c^{2}-{v_{0}}^{2}}} \end{align*}

Inserting this into (1)(1) yields the following.

(txyz)=(cc2v02v0cc2v0200v0cc2v02cc2v020000100001)(txyz) \begin{pmatrix} t^{\prime} \\ x^{\prime} \\ y^{\prime} \\ z^{\prime} \end{pmatrix} = \begin{pmatrix} \dfrac{c}{\sqrt{c^{2}-{v_{0}}^{2}}} & -\dfrac{v_{0}}{c\sqrt{c^{2}-{v_{0}}^{2}}} & 0 & 0 \\ -v_{0} \dfrac{c}{\sqrt{c^{2}-{v_{0}}^{2}}} & \dfrac{c}{\sqrt{c^{2}-{v_{0}}^{2}}} & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{pmatrix} \begin{pmatrix} t \\ x \\ y \\ z \end{pmatrix}

Here, (txyz)\begin{pmatrix} t \\ x \\ y \\ z \end{pmatrix} is referred to as a time-space four-vector. However, since x,y,zx, y, z is a unit of length and only tt is a unit of time, to align the units, ctct is used instead of tt (since time*velocity=distance and cc is the speed of light).

t=c  tv0c1  xct=c  ctv0  x    x=v0c  t+c  xx=v0  ct+c  x \begin{array}{ccc} t^{\prime} = \dfrac{c}{\sqrt{\ \ }}t -\dfrac{v_{0}}{c} \dfrac{1}{\sqrt{\ \ }} x && ct^{\prime} =\dfrac{c}{\sqrt{\ \ }}ct - \dfrac{v_{0}}{\sqrt{\ \ }}x \\ & \implies & \\ x^{\prime} =\dfrac{-v_{0}c}{\sqrt{\ \ }}t +\dfrac{c}{\sqrt{\ \ }}x && x^{\prime}= \dfrac{-v_{0}}{\sqrt{\ \ }}ct + \dfrac{c}{\sqrt{ \ \ }}x \end{array}

The 4-vector with aligned units is as follows.

(ctxyz)=(cc2v02v0c2v0200v0c2v02cc2v020000100001)(ctxyz) \begin{pmatrix} ct^{\prime} \\ x^{\prime} \\ y^{\prime} \\ z^{\prime} \end{pmatrix} = \begin{pmatrix} \dfrac{c}{\sqrt{c^{2}-{v_{0}}^{2}}} & -\dfrac{v_{0}}{\sqrt{c^{2}-{v_{0}}^{2}}} & 0 & 0 \\ \dfrac{-v_{0}}{\sqrt{c^{2}-{v_{0}}^{2}}} & \dfrac{c}{\sqrt{c^{2}-{v_{0}}^{2}}} & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{pmatrix} \begin{pmatrix} ct \\ x \\ y \\ z \end{pmatrix}

This transformation is precisely the new transformation that fits into Maxwell’s equations (the speed of light being cc in any coordinate system). This transformation is called the Lorentz transformation. However, because it’s too complicated to write in the form above, it’s easier to make the common parts constants. The following γ0\gamma_{0} is called the Lorentz factor.

γ0cc2v02=11v02c2 \gamma_{0} \equiv \frac{c}{\sqrt{c^{2}-{v_{0}}^{2}}}=\frac{1}{\sqrt{1-\frac{{v_{0}}^{2}}{c^{2}}}}

And let’s state β0\beta_{0} as follows.

β0v0c \beta_{0} \equiv \frac{v_{0}}{c}

Then, the Lorentz factor can be represented more simply.

γ0=11β02v0c2v02=v0c11v02c2=γ0β0 \begin{align*} \gamma_{0} &= \frac{1}{\sqrt{1-{\beta_{0}}^{2}}} \\ \frac{-v_{0}}{\sqrt{c^{2}-{v_{0}}^{2}}} &= \frac{-v_{0}}{c}\frac{1}{\sqrt{1-\frac{{v_{0}}^{2}}{c^{2}}}}=-\gamma_{0}\beta_{0} \end{align*} Inserting it into the Lorentz transformation yields the following.

(ctxyz)=(γ0γ0β000γ0β0γ00000100001)(ctxyz) \begin{pmatrix} ct^{\prime} \\ x^{\prime} \\ y^{\prime} \\ z^{\prime} \end{pmatrix} = \begin{pmatrix} \gamma_{0} & -\gamma_{0}\beta_{0} & 0 & 0 \\ -\gamma_{0}\beta_{0} & \gamma_{0} & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{pmatrix} \begin{pmatrix} ct \\ x \\ y \\ z \end{pmatrix}

Explanation

Although the Galilean transformation led to the derivation of the Lorentz transformation due to the parts it couldn’t explain, it isn’t entirely incorrect. If v0v_{0} is negligibly small compared to the speed of light cc in the Lorentz transformation, i.e., if v0c=0\frac{v_{0}}{c}=0, then the Lorentz transformation takes the same form as the Galilean transformation.

(txyz)=(cc2v02v0cc2v0200v0cc2v02cc2v020000100001)(txyz)=(11(v0/c)2v0c211(v0/c)200v01(v0/c)211(v0/c)20000100001)(txyz)=(11020110200v010211020000100001)(txyz)=(1000v010000100001)(txyz) \begin{align*} \begin{pmatrix} t^{\prime} \\ x^{\prime} \\ y^{\prime} \\ z^{\prime} \end{pmatrix}&=\begin{pmatrix} \dfrac{c}{\sqrt{c^{2}-{v_{0}}^{2}}} & -\dfrac{v_{0}}{c\sqrt{c^{2}-{v_{0}}^{2}}} & 0 & 0 \\ \dfrac{-v_{0}c}{\sqrt{c^{2}-{v_{0}}^{2}}} & \dfrac{c}{\sqrt{c^{2}-{v_{0}}^{2}}} & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{pmatrix} \begin{pmatrix} t \\ x \\ y \\ z \end{pmatrix} \\ &= \begin{pmatrix} \dfrac{1}{\sqrt{1-{(v_{0}/c)}^{2}}} & -\dfrac{v_{0}}{c^{2}}\dfrac{1}{\sqrt{1-{(v_{0}/c)}^{2}}} & 0 & 0 \\ \dfrac{-v_{0}}{\sqrt{1-{(v_{0}/c)}^{2}}} & \dfrac{1}{\sqrt{1-{(v_{0}/c)}^{2}}} & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{pmatrix}\begin{pmatrix} t \\ x \\ y \\ z \end{pmatrix} \\ &= \begin{pmatrix} \dfrac{1}{\sqrt{1-{0}^{2}}} & -0\dfrac{1}{\sqrt{1-{0}^{2}}} & 0 & 0 \\ \dfrac{-v_{0}}{\sqrt{1-{0}^{2}}} & \dfrac{1}{\sqrt{1-{0}^{2}}} & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{pmatrix} \begin{pmatrix} t \\ x \\ y \\ z \end{pmatrix} \\ &=\begin{pmatrix} 1& 0 & 0 & 0 \\ -v_{0} & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{pmatrix}\begin{pmatrix} t \\ x \\ y \\ z \end{pmatrix} \end{align*}