logo

Bivariate von Mises Distribution 📂Probability Distribution

Bivariate von Mises Distribution

Definition 1

The mean direction $\mu, \nu \in \mathbb{R}$ and concentration $\kappa_{1}, \kappa_{2} > 0$ with respect to a certain matrix $A \in \mathbb{R}^{2 \times 2}$ have a continuous probability distribution $\text{vM}^{2} \left( \mu , \nu , \kappa_{1} , \kappa_{2} \right)$ with a probability density function that is proportional to the following, which is called the Bivariate von Mises Distribution: $$ \exp \left[ \kappa_{1} \cos \left( \theta - \mu \right) + \kappa_{2} \cos \left( \phi - \nu \right) + \begin{bmatrix} \cos \left( \theta - \mu \right) & \sin \left( \theta - \mu \right) \end{bmatrix} A \begin{bmatrix} \cos \left( \phi - \nu \right) \\ \sin \left( \phi - \nu \right) \end{bmatrix} \right] $$ Simplifying it to when $A = \begin{bmatrix} \alpha & 0 \\ 0 & \beta \end{bmatrix}$ yields $$ \exp \left[ \begin{align*} & \kappa_{1} \cos \left( \theta - \mu \right) + \kappa_{2} \cos \left( \phi - \nu \right) \\ &+ \alpha \cos \left( \theta - \mu \right) \cos \left( \phi - \nu \right) \\ &+ \beta \sin \left( \theta - \mu \right) \sin \left( \phi - \nu \right) \end{align*} \right] $$ For practical purposes, the following models, which further reduce the parameters, are famous.

Sine Model

When setting $\alpha = 0$ and $\beta = \lambda$, the bivariate von Mises distribution with the following probability density function is shortly referred to as the Sine Model: $$ f_{s} \left( \theta , \phi \right) := c \left( \kappa_{1} , \kappa_{2} \right) \exp \left[ \begin{align*} & \kappa_{1} \cos \left( \theta - \mu \right) + \kappa_{2} \cos \left( \phi - \nu \right) \\ &+ \lambda \sin \left( \theta - \mu \right) \sin \left( \phi - \nu \right) \end{align*} \right] \qquad , \left( \theta , \phi \right) \in \left[ 0, 2 \pi \right]^{2} $$ Here, $c \left( \kappa_{1} , \kappa_{2} \right)$ is a normalizing constant given as follows. $$ c \left( \kappa_{1} , \kappa_{2} \right) := 4 \pi^{2} \sum_{m=1}^{\infty} \binom{2m}{m} \left( {{ \lambda^{2} } \over { 4 \kappa_{1} \kappa_{2} }} \right)^{m} I_{m} \left( \kappa_{1} \right) I_{m} \left( \kappa_{2} \right) $$

Cosine Model

When setting $\alpha = \beta = - \kappa_{3}$ and satisfying $\min \left\{ \kappa_{1} , \kappa_{2} \right\} \ge \kappa_{3} \ge 0$, the bivariate von Mises distribution with the following probability density function is shortly referred to as the Cosine Model: $$ f_{c} \left( \theta , \phi \right) := c \left( \kappa_{1} , \kappa_{2} , \kappa_{3} \right) \exp \left[ \begin{align*} & \kappa_{1} \cos \left( \theta - \mu \right) + \kappa_{2} \cos \left( \phi - \nu \right) \\ &- \kappa_{3} \cos \left( \theta - \mu - \phi + \nu \right) \end{align*} \right] \qquad , \left( \theta , \phi \right) \in \left[ 0, 2 \pi \right]^{2} $$ Here, $c \left( \kappa_{1} , \kappa_{2} , \kappa_{3} \right)$ is a normalizing constant given as follows. $$ c \left( \kappa_{1} , \kappa_{2} , \kappa_{3} \right) := 4 \pi^{2} \left[ I_{0} \left( \kappa_{1} \right) I_{0} \left( \kappa_{2} \right) I_{0} \left( \kappa_{3} \right) + 2 \sum_{p=1}^{\infty} I_{p} \left( \kappa_{1} \right) I_{p} \left( \kappa_{2} \right) I_{p} \left( \kappa_{3} \right) \right] $$


Description 2

zpq0160802340008.jpeg

If the von Mises Distribution can be considered a normal distribution on a unit circle $S^{1}$, then the bivariate von Mises distribution can be seen as a normal distribution on a torus $S^{1} \times S^{1}$ as shown in the figure above.

You might wonder what the point is of studying donuts, but in reality, similar motifs can be found in applications such as in bioinformatics, where it’s relevant to understand the molecular structure of proteins and the angles at which they are connected.

zpq0160802340001.jpeg zpq0160802340006.jpeg zpq0160802340003.jpeg


  1. Mardia. (2007). Bivariate von Mises densities for angular data with applications to protein bioinformatics. https://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.575.3846 ↩︎

  2. Boomsma. (2008). A generative, probabilistic model of local protein structure. https://doi.org/10.1073/pnas.0801715105 ↩︎