logo

Determinant of a Triangular Matrix 📂Matrix Algebra

Determinant of a Triangular Matrix

English Translation

Theorem

The determinant of a triangular matrix is expressed as the product of its diagonal elements.

Proof 1

Without loss of generality, assume that AA is an upper triangular matrix.

A:=[a11a12a13a1n0a22a23a2n00a33a3n000ann] A := \begin{bmatrix} a_{11} & a_{12} & a_{13} & \cdots & a_{1n} \\ 0 & a_{22} & a_{23} & \cdots & a_{2n} \\ 0 & 0 & a_{33} & \cdots & a_{3n} \\ \vdots & \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & 0 & \cdots & a_{nn} \end{bmatrix}

Laplace’s Expansion: Let a square matrix An×n=(aij)A_{n \times n} = (a_{ij}) be given. Considering the determinant MijM_{ij} of the matrix obtained by removing the ii-th row and the jj-th row from the square matrix An×n=(aij)A_{n \times n} = (a_{ij}), where Cij:=(1)i+jMijC_{ij} := (-1)^{i + j} M_{ij} is referred to as the cofactor for the selected jj-th column. The following holds true: detA=i=1naijCij \det A = \sum_{i=1}^{n} a_{ij} C_{ij}

Considering the uppermost minors M1jM_{1j}, since they are at least j1j \ne 1, the leftmost column must be a zero vector, leading to M1j=0M_{1j} = 0. By recursive application of Laplace’s expansion, we obtain the following: detA=det[a11a12a13a1n0a22a23a2n00a33a3n000ann]=a11det[a22a23a2n0a33a3n00ann]=a11a22det[a33a3n0ann]=i=1naii \begin{align*} \det A =& \det \begin{bmatrix} a_{11} & a_{12} & a_{13} & \cdots & a_{1n} \\ 0 & a_{22} & a_{23} & \cdots & a_{2n} \\ 0 & 0 & a_{33} & \cdots & a_{3n} \\ \vdots & \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & 0 & \cdots & a_{nn} \end{bmatrix} \\ =& a_{11} \det \begin{bmatrix} a_{22} & a_{23} & \cdots & a_{2n} \\ 0 & a_{33} & \cdots & a_{3n} \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & \cdots & a_{nn} \end{bmatrix} \\ =& a_{11} a_{22} \det \begin{bmatrix} a_{33} & \cdots & a_{3n} \\ \vdots & \ddots & \vdots \\ 0 & \cdots & a_{nn} \end{bmatrix} \\ =& \prod_{i=1}^{n} a_{ii} \end{align*}