logo

The Fundamental group of a Torus is Isomorphic to the Product of Two Integer groups 📂Topological Data Analysis

The Fundamental group of a Torus is Isomorphic to the Product of Two Integer groups

Theorem 1

π1(T2)Z×Z \pi_{1} \left( T^{2} \right) \simeq \mathbb{Z} \times \mathbb{Z} The fundamental group of a torus T2T^{2} is Z×Z\mathbb{Z} \times \mathbb{Z}.

Proof

Properties of induced homomorphisms:

  • [2]: If φ:XY\varphi : X \to Y is a homeomorphism, then φ:π1(X,x)π1(Y,φ(x))\varphi_{\ast} : \pi_{1} \left( X, x \right) \to \pi_{1} \left( Y, \varphi (x) \right) is an isomorphism.

Fundamental group of a product space: π1(X×Y)π1(X)×π1(Y) \pi_{1} \left( X \times Y \right) \simeq \pi_{1} \left( X \right) \times \pi_{1} \left( Y \right)

Fundamental group of a circle: π1(S1,1)Z \pi_{1} \left( S^{1}, 1 \right) \simeq \mathbb{Z}

Since the torus T2T^{2} is homeomorphic to S1×S1S^{1} \times S^{1}, and the fundamental group of the circle S1S^{1} is isomorphic to Z\mathbb{Z}, we obtain the following. π1(T2)π1(S1×S1)π1(S1)×π1(S1)Z×Z \begin{align*} \pi_{1} \left( T^{2} \right) \simeq & \pi_{1} \left( S^{1} \times S^{1} \right) \\ \simeq & \pi_{1} \left( S^{1} \right) \times \pi_{1} \left( S^{1} \right) \\ \simeq & \mathbb{Z} \times \mathbb{Z} \end{align*}


  1. Kosniowski. (1980). A First Course in Algebraic Topology: p140. ↩︎