Sufficient Statistics of the Gamma Distribution
📂Probability DistributionSufficient Statistics of the Gamma Distribution
Theorem
Given a random sample X:=(X1,⋯,Xn)∼Γ(k,θ) that follows the Gamma distribution.
The sufficient statistic T for (k,θ) is as follows.
T=(i∏Xi,i∑Xi)
Proof
f(x;k,θ)====k=θk=1∏nf(xk;k,θ)i=1∏nΓ(k)θk1xik−1e−xi/θ(Γ(k)θk1)n(i=1∏nxi)k−1e−∑ixi/θ(Γ(k)θk1)n(i=1∏nxi)k−1⋅e−∑ixi/θθnk1exp(−i∑xi/θ)⋅(Γ(k)1)n(i=1∏nxi)k−1
According to the Neyman factorization theorem, T:=(∏iXi,∑iXi) is the sufficient statistic for (k,θ).
■