logo

Convolution Formula of Probability Density Functions 📂Mathematical Statistics

Convolution Formula of Probability Density Functions

Formula 1

Given two independent continuous random variables X,YX, Y, their probability density functions are given by fX,fYf_{X}, f_{Y}. Then the probability density function of Z:=X+YZ := X + Y is the convolution of the two probability density functions fZ=fXfYf_{Z} = f_{X} \ast f_{Y}. fZ(z)=(fXfY)(z)=fX(w)fY(zw)dw f_{Z} (z) = \left( f_{X} \ast f_{Y} \right) (z) = \int_{-\infty}^{\infty} f_{X} (w) f_{Y} (z-w) dw

Derivation

If we let W:=XW := X, the Jacobian is 1110=1=1 \begin{Vmatrix} 1 & 1 \\ 1 & 0 \end{Vmatrix} = \left| -1 \right| = 1 , and the joint probability density function of ZZ and WW fZ,Wf_{Z,W} is fZ,W(z,w)=fX,Y(w,zw)=fX(w)fY(zw) f_{Z,W} \left( z,w \right) = f_{X,Y} \left( w, z-w \right) = f_{X} (w) f_{Y} (z-w) . Therefore, the marginal probability density function of ZZ is found through the definite integral at <w<-\infty < w < \infty as follows. fZ(z)=fX(w)fY(zw)1dw f_{Z} (z) = \int_{-\infty}^{\infty} f_{X} (w) f_{Y} (z-w) |1| dw


  1. Casella. (2001). Statistical Inference(2nd Edition): p215. ↩︎