logo

Pareto Distribution 📂Probability Distribution

Pareto Distribution

Definition 1

pdf.gif

For the scale parameter x0>0x_{0} > 0 and the shape parameter α>0\alpha > 0, the following probability function is referred to as the Pareto Distribution, Power Law, or Scale-free Distribution:

  1. Continuous: For a constant CC that satisfies constant x0p(x)dx=1\displaystyle \int_{x_{0}}^{\infty} p(x) dx = 1 p(x)=Cxα,x>x0 p(x) = C x^{-\alpha} \qquad , x > x_{0}
  2. Discrete: For the Riemann zeta function ζ\zeta pk=1ζ(α)kα,kN p_{k} = {{ 1 } \over { \zeta (\alpha) }} k^{-\alpha} \qquad , k \in \mathbb{N}

Basic Properties

  • [1] Moment generating function: The moment generating function of the Pareto distribution does not exist.
  • [2] Mean and variance: If XPareto(x0,α)X \sim \text{Pareto} \left( x_{0}, \alpha \right), then E(X)=α1α2x0,α>2Var(X)=(α1)(α2)2(α3)x02,α>3 \begin{align*} E (X) =& {{ \alpha - 1 } \over { \alpha - 2 }} x_{0} & , \alpha > 2 \\ \Var (X) =& {{ (\alpha - 1) } \over { \left( \alpha -2 \right)^{2} (\alpha - 3) }} x_{0}^{2} & , \alpha > 3 \end{align*}

Theorems

  • [a] Scale-freeness: The Pareto distribution is the unique Scale-free Distribution. In other words, for all bb, there exists some constant α\alpha such that the following holds true. p(bx)=g(b)p(x)    p(x)=p(1)xα p(bx) = g(b) p(x) \implies p(x) = p(1) x^{-\alpha}
  • [b] The kkth moment: If 0<k<α10 < k < \alpha - 1, then the kkth moment exists and EXk=α1α1kx0k E X^{k} = {{ \alpha - 1 } \over { \alpha - 1 - k }} x_{0}^{k}

Description

The Pareto distribution is a representative distribution that explains the prevalent inequality in the real world, closely related to the following concepts:

  • Heaps’ law and Zipf’s law: Empirical laws concerning the frequency of words.
  • Book sales
  • Traffic volume
  • Earthquake magnitudes
  • Diameters of craters
  • Wealth
  • Citation count

Looking at the shape of the probability density function, one can intuitively understand that the greater the shape α\alpha, the more severe the inequality becomes. In economic terms, this means the rich have an endless amount of money, and the poor are plentiful.

The statement that the Pareto distribution possesses scale-freeness literally means there is no scale. For example, if two random variables follow the Poisson distribution with parameters λ1=10\lambda_{1} = 10 and λ2=1000\lambda_{2} = 1000, depending on where you look, there can be a big difference, but the Pareto distribution essentially has no difference wherever you look. Mathematically, this corresponds to the conclusion being the same regardless of the value given to bb.

Proof

[1]

The existence of a random variable’s moment generating function implies that the kkth moment exists for all kNk \in \mathbb{N}. However, as specified in theorem [2], the 11th moment of the Pareto distribution exists only when α>1\alpha > 1, thus the moment generating function cannot exist.

[2]

Strategy: Use the moment formula [b].


Given EX1=α1α11x01=α1α2x01 \begin{align*} EX^{1} =& {{ \alpha - 1 } \over { \alpha - 1 - 1 }} x_{0}^{1} \\ =& {{ \alpha - 1 } \over { \alpha - 2 }} x_{0}^{1} \end{align*} , and since EX2=α1α3x02\displaystyle EX^{2} = {{ \alpha - 1 } \over { \alpha - 3 }} x_{0}^{2}, then VarX=α1α3x02[α1α2x01]2=[1α3α1(α2)2](α1)x02=[α24α+4α2+4α3](α1)(α3)(α2)2x02=(α1)(α2)2(α3)x02 \begin{align*} \Var X =& {{ \alpha - 1 } \over { \alpha - 3 }} x_{0}^{2} - \left[ {{ \alpha - 1 } \over { \alpha - 2 }} x_{0}^{1} \right]^{2} \\ =& \left[ {{ 1 } \over { \alpha - 3 }} - {{ \alpha - 1 } \over { \left( \alpha - 2 \right)^{2} }} \right] (\alpha - 1) x_{0}^{2} \\ =& \left[ \alpha^{2} - 4 \alpha + 4 - \alpha^{2} + 4 \alpha - 3 \right] {{ (\alpha - 1) } \over { (\alpha - 3) \left( \alpha -2 \right)^{2} }} x_{0}^{2} \\ =& {{ (\alpha - 1) } \over { \left( \alpha -2 \right)^{2} (\alpha - 3) }} x_{0}^{2} \end{align*}

[a]

Assuming for all bb, there exists some function gg such that p(bx)=g(b)p(x) p(bx) = g(b) p(x) holds true. Substituting x=1x = 1 gives p(b)=g(b)p(1)p(b) = g(b) p(1), hence g(b)=p(b)/p(1)g(b) = p(b) / p(1) and p(bx)=p(b)p(x)p(1) p(bx) = {{ p(b) p(x) } \over { p(1) }} Differentiating with respect to bb yields xp(bx)=p(b)p(x)p(1) x p '(bx) = {{ p ' (b) p(x) } \over { p(1) }} Substituting b=1b=1 and applying the trick using differentiation of logarithmic functions2 xp(x)=p(1)p(x)p(1)    p(x)p(x)=p(1)p(1)1x    dlogp(x)dx=p(1)p(1)1x    dlogp(x)=p(1)p(1)1xdx \begin{align*} & x p '(x) = {{ p ' (1) p(x) } \over { p(1) }} \\ \implies & {{ p '(x) } \over { p(x) }} = {{ p '(1) } \over { p(1) }} \cdot {{ 1 } \over { x }} \\ \implies & {{ d \log p(x) } \over { dx }} = {{ p '(1) } \over { p(1) }} \cdot {{ 1 } \over { x }} \\ \implies & d \log p(x) = {{ p '(1) } \over { p(1) }} {{ 1 } \over { x }} dx \end{align*} This forms a simple separable first-order differential equation, for some constant constant\text{constant}, yielding logp(x)=p(1)p(1)logx+constant \log p(x) = {{ p '(1) } \over { p(1) }} \log x + \text{constant} Substituting x=1x = 1 shows constant=logp(1)\text{constant} = \log p(1). Defining α:=p(1)p(1)\displaystyle \alpha := - {{ p '(1) } \over { p(1) }} gives us the desired equation, logp(x)=αlogx+logp(1)    logp(x)=logxα+logp(1)    logp(x)=logxαp(1)    p(x)=p(1)xα \begin{align*} & \log p(x) = - \alpha \log x + \log p(1) \\ \implies & \log p(x) = \log x^{-\alpha} + \log p(1) \\ \implies & \log p(x) = \log x^{-\alpha} p(1) \\ \implies & p(x) = p(1) x^{-\alpha} \end{align*}

[b]

Since 0<α10 < \alpha -1, from x0Cxαdx=1\displaystyle \int_{x_{0}}^{\infty} C x^{-\alpha} dx = 1 we obtain C=(α1)x0α1C = \left( \alpha - 1 \right) x_{0}^{\alpha - 1}. Therefore, EXk=x0xkCxαdx=Cx0xkαdx=(α1)x0α1[1kα+1xkα+1]x0=(α1)x0α1(01kα+1x0kα+1)=α1α1kx0k \begin{align*} E X^{k} =& \int_{x_{0}}^{\infty} x^{k} C x^{-\alpha} dx \\ =& C \int_{x_{0}}^{\infty} x^{k-\alpha} dx \\ =& \left( \alpha - 1 \right) x_{0}^{\alpha - 1} \left[ {{ 1 } \over { k - \alpha + 1 }} x^{k - \alpha + 1} \right]_{x_{0}}^{\infty} \\ =& \left( \alpha - 1 \right) x_{0}^{\alpha - 1} \left( 0 - {{ 1 } \over { k - \alpha + 1 }} x_{0}^{k - \alpha + 1} \right) \\ =& {{ \alpha - 1 } \over { \alpha - 1 - k }} x_{0}^{k} \end{align*}

Visualization

The following is Julia code that displays the probability density function of the Pareto distribution as a GIF.

@time using LaTeXStrings
@time using Distributions
@time using Plots

cd(@__DIR__)

x = 1:0.1:10
A = collect(0.5:0.01:3.5); append!(A, reverse(A))

animation = @animate for α ∈ A
    plot(x, pdf.(Pareto(α), x),
     color = :black,
     label = "α = $(round(α, digits = 2))", size = (400,300))
    xlims!(0,5); ylims!(0,4); title!(L"\mathrm{pdf\,of\,Pareto}(\alpha)")
end
gif(animation, "pdf.gif")

  1. Newman. (2005). Power laws, Pareto distributions and Zipf’s law. https://doi.org/10.1080/00107510500052444 ↩︎

  2. https://math.stackexchange.com/a/391311 ↩︎