logo

Ornstein-Uhlenbeck Equation 📂Stochastic Differential Equations

Ornstein-Uhlenbeck Equation

Definition 1

dXt=aXtdt+σdWt d X_{t} = a X_{t} dt + \sigma d W_{t} Let a,σRa , \sigma \in \mathbb{R}. The stochastic differential equation given above is called the Ornstein-Uhlenbeck Equation, and its solution, the stochastic process XtX_{t}, is called the Ornstein-Uhlenbeck Process. Xt=X0eat+σ0tea(ts)dWs X_{t} = X_{0} e^{a t} + \sigma \int_{0}^{t} e^{a (t-s)} d W_{s}

Description 2

The Ornstein-Uhlenbeck equation is also known as the Langevin Equation.

If a<0a < 0, then the sign of XtX_{t} and aXtdta X_{t} dt reverses, resulting in stationary movement. When Xt>0X_{t} > 0, it tends to decrease, and when Xt<0X_{t} < 0, it tends to increase, meaning XtX_{t} always tries to return to 00. Generalizing this for μR\mu \in \mathbb{R}, we obtain an SDE that has a Mean-reverting Ornstein-Uhlenbeck Process as its solution. dXt=a(Xtμ)dt+σdWt,a<0 d X_{t} = a \left( X_{t} - \mu \right) dt + \sigma d W_{t} \qquad , a < 0 This Ornstein-Uhlenbeck process can be seen as a Brownian motion fluctuating around the mean μ\mu.

Solution

dXt=aXtdt+σdWt d X_{t} = a X_{t} dt + \sigma d W_{t} Multiply both sides by eate^{-a t} to obtain the following. eatdXt=eatXt+σeatdWt e^{-a t}d X_{t} = e^{-a t} X_{t} + \sigma e^{-a t} d W_{t} If we compute d(eatXt)d \left( e^{-a t} X_{t} \right), then d(eatXt)dt=aeatXt+eatdXtdt    d(eatXt)=aeatXtdt+eatdXt {{ d \left( e^{-a t} X_{t} \right) } \over { dt }} = -a e^{-a t} X_{t} + e^{-a t} {{ d X_{t} } \over { dt }} \\ \implies d \left( e^{-a t} X_{t} \right) = -a e^{-a t} X_{t} dt + e^{-a t} d X_{t} So, eatdXt=aeatXtdt+d(eatXt)=aeatXtdt+σeatdWt \begin{align*} e^{-a t}d X_{t} =& a e^{-a t} X_{t} dt + d \left( e^{-a t} X_{t} \right) \\ =& a e^{-a t} X_{t} dt + \sigma e^{-a t} d W_{t} \end{align*} Arranging aeatXtdta e^{-a t} X_{t} dt and taking 0t\int_{0}^{t} results in the following. d(eatXt)=σeatdWt    0td(easXs)=0tσeasdWs    eatXtX0=0tσeasdWs    eatXt=X0+0tσeasdWs    Xt=eatX0+0tσea(ts)dWs \begin{align*} & d \left( e^{-a t} X_{t} \right) = \sigma e^{-a t} d W_{t} \\ \implies& \int_{0}^{t} d \left( e^{-a s} X_{s} \right) = \int_{0}^{t} \sigma e^{-a s} d W_{s} \\ \implies& e^{-a t} X_{t} - X_{0} = \int_{0}^{t} \sigma e^{-a s} d W_{s} \\ \implies& e^{-a t} X_{t} = X_{0} + \int_{0}^{t} \sigma e^{-a s} d W_{s} \\ \implies& X_{t} = e^{a t} X_{0} + \int_{0}^{t} \sigma e^{a (t-s)} d W_{s} \end{align*}


  1. Øksendal. (2003). Stochastic Differential Equations: An Introduction with Applications: p74. ↩︎

  2. Panik. (2017). Stochastic Differential Equations: An Introduction with Applications in Population Dynamics Modeling: p144. ↩︎