logo

Multivariate t-Distribution 📂Probability Distribution

Multivariate t-Distribution

Definition

Given a location vector μRp\mathbf{\mu} \in \mathbb{R}^{p} and a scale matrix ΣRp×p\Sigma \in \mathbb{R}^{p \times p} that is positive definite, the multivariate distribution tp(ν;μ,Σ)t_{p} \left(\nu; \mu , \Sigma \right) with the following probability density function is referred to as the Multivariate t-distribution.

f(x)=Γ[(ν+p)/2]Γ(ν/2)νpπpdetΣ[1+1ν(xμ)TΣ1(xμ)],xRp f (\textbf{x}) = {{ \Gamma \left[ (\nu + p) / 2 \right] } \over { \Gamma ( \nu / 2) \sqrt{ \nu^{p} \pi^{p} \det \Sigma } }} \left[ 1 + {{ 1 } \over { \nu }} \left( \textbf{x} - \mathbf{\mu} \right)^{T} \Sigma^{-1} \left( \textbf{x} - \mathbf{\mu} \right) \right] \qquad , \textbf{x} \in \mathbb{R}^{p}

Description

  • When p=1p = 1, then μR1\mu \in \mathbb{R}^{1}, and ΣR1×1\Sigma \in \mathbb{R}^{1 \times 1}, the above probability density function precisely becomes the probability density function of a univariate t-distribution with degrees of freedom ν\nu.
  • Just as when ν=1\nu = 1 the t-distribution turns into a Cauchy distribution, the multivariate t-distribution likewise becomes a Multivariate Cauchy distribution.