logo

Properties of Zero in Inner Product Spaces 📂Hilbert Space

Properties of Zero in Inner Product Spaces

Theorem

Let’s call (X,,)\left( X, \left\langle \cdot,\cdot \right\rangle \right) an inner space.

(a) For all xX\mathbf{x}\in X, the following holds:

0,x=0 \left\langle \mathbf{0},\mathbf{x} \right\rangle = 0

(b) For all xX\mathbf{x}\in X, there exists only one element in XX that satisfies the following equation:

xX, x,y=0    y=0 \forall \mathbf{x}\in X,\ \left\langle \mathbf{x},\mathbf{y} \right\rangle = 0 \implies \mathbf{y}=\mathbf{0}

(c) Let’s call it y,zX\mathbf{y}, \mathbf{\mathbf{z}} \in X. And

x,y=x,z,xX \begin{equation} \left\langle \mathbf{x},\mathbf{y} \right\rangle =\left\langle \mathbf{x}, \mathbf{z} \right\rangle, \quad \forall \mathbf{x}\in X \end{equation}

Assuming that, the following holds:

y=z \mathbf{y}=\mathbf{z}

Explanation

The bold 0\mathbf{0} signifies the zero vector as the identity element of addition in the vector space XX. 00 means the constant 00.

Proof

(a)

By the definition of inner products,

0,x= xx,x= x,xx,x= 0 \begin{align*} \left\langle \mathbf{0},\mathbf{x} \right\rangle =&\ \left\langle \mathbf{x}-\mathbf{x},\mathbf{x} \right\rangle \\ =&\ \left\langle \mathbf{x},\mathbf{x} \right\rangle -\left\langle \mathbf{x},\mathbf{x} \right\rangle \\ =&\ 0 \end{align*}

(b)

Assuming (a) holds for an element yX\mathbf{y} \in X that is not 0\mathbf{0}, then y\mathbf{y} must have an inner product of 00 with all elements of XX, thus the inner product with itself must also be 00.

y,y=0 \left\langle \mathbf{y},\mathbf{y} \right\rangle = 0

However, this contradicts the definition of the inner product, therefore the only element that satisfies (a) is 0\mathbf{0}.

(c)

Assuming (3)(3),

x,yz=0xX \left\langle \mathbf{x},\mathbf{y}-\mathbf{z} \right\rangle = 0 \quad \forall \mathbf{x}\in X

and by (b),

yz= 0    y= z \begin{align*} && \mathbf{y}-\mathbf{z} =&\ \mathbf{0} \\ \implies && \mathbf{y} =&\ \mathbf{z} \end{align*}