logo

Proof of Euler's Representation of the Sinc Function 📂Functions

Proof of Euler's Representation of the Sinc Function

Definition

Unnormalized Sinc Function

The following function sinc:RR\sinc : \mathbb{R} \to \mathbb{R} is called the sinc function.

sincx:={sinxx,if x01,if x=0 \sinc x := \begin{cases} \displaystyle {{\sin x} \over {x}} & , \text{if } x \ne 0 \\ 1 & , \text{if } x = 0 \end{cases}

Normalized Sinc Function

sincx:={sinπxπx,if x01,if x=0 \sinc x := \begin{cases} \displaystyle {{\sin \pi x} \over {\pi x}} & , \text{if } x \ne 0 \\ 1 & , \text{if } x = 0 \end{cases}

Theorem

Euler’s Representation

sincx=sinπxπx=n=1(1x2n2) \sinc x = {{\sin \pi x} \over {\pi x}} = \prod_{n=1}^{\infty} \left( 1 - {{x^2} \over { n^2}} \right)

Explanation

A sinc function is a function that divides sinx\sin x by xx, and it is quite useful since it has its own name. Although not always mentioned by name in textbooks, it often appears in the sections on limits and continuity.

Essentially, the unnormalized and normalized sinc functions are the same, so they are not strictly distinguished. The definition used usually depends on the context.

For reference, the ideal integral of the sinc function is calculated as sinxxdx=π\displaystyle \int_{- \infty}^{\infty} {{\sin x} \over {x} } dx = \pi.

Proof 1

Strategy: The proof to be introduced is not intuitive and contains many technical parts, making it quite difficult to understand. However, it is relatively more straightforward and has the advantage of not using complex analysis.


Part 1. Even Function r(x)r(x) Periodicity

Let the ratio of the sinc function sincx\sinc x and Euler’s representation f(x):=n=1(1x2n2)\displaystyle f(x) := \prod_{n=1}^{\infty} \left( 1 - {\frac{ x^{2} }{ n^{2} }} \right) be a function of xx as follows. r(x):=sincxf(x) r(x) := {\frac{ \sinc x }{ f(x) }} The relationship between sincx\sinc x and sinc(x+1)\sinc (x+1) is as follows. sinc(x+1)=sinπ(x+1)π(x+1)=sinπxπxxx+1=(xx+1)sincx \begin{align*} \sinc (x+1) =& {\frac{ \sin \pi (x+1) }{ \pi \cdot (x+1) }} \\ =& {\frac{ - \sin \pi x }{ \pi x }} {\frac{ x }{ x+1 }} \\ =& \left( - {\frac{ x }{ x+1 }} \right) \cdot \sinc x \end{align*} Meanwhile, f(x)f(x) and f(x+1)f(x+1) also have the following relationship. (xx+1)f(x)=(xx+1)n=1(1x2n2)=(xx+1)(1x)(2x)n=21n2(1+x)(2+x)=(0x)(1x)(2x)n=21n2(2+x)=f(x+1) \begin{align*} & \left( - {\frac{ x }{ x+1 }} \right) f(x) \\ =& \left( - {\frac{ x }{ x+1 }} \right) \prod_{n=1}^{\infty} \left( 1 - {{x^2} \over { n^2}} \right) \\ =& \left( - {\frac{ x }{ \cancel{x+1} }} \right) \left( 1 - x \right) \left( 2 - x \right) \cdots \prod_{n=2}^{\infty} {\frac{ 1 }{ n^{2} }} \cancel{\left( 1 + x \right)} \left( 2 + x \right) \cdots \\ =& - \left( 0 - x \right) \left( 1 - x \right) \left( 2 - x \right) \cdots \prod_{n=2}^{\infty} {\frac{ 1 }{ n^{2} }} \left( 2 + x \right) \cdots \\ =& - f(x+1) \end{align*} Thus, r(x)r(x) is a 11-periodic function, and considering only 1/2<x1/2-1/2 < x \le 1/2 is sufficient to show that sinc\sinc and ff are equal. In fact, both sincx\sinc x and f(x)f(x) are even functions and so is r(x)r(x) defined by their ratio, making 0<x1/20 < x \le 1/2 sufficient.

Part 2. Recurrence Relation (n2c2)In(c)=(n2n)In2(c)(n^2 - c^2) I_{n} (c) = ( n^{2} - n) I_{n-2} (c)

In(c):=0π2cosntcosctdt I_{n} (c) := \int_{0}^{ { {\pi} \over {2} } } \cos ^{n} t \cos ct dt Define it, and then I0(0)=0π2cos0dt=π2I0(2x)=0π2cos2xtdt=[sin2xt2x]0π2=sinπx2x I_{0} (0) = \int_{0}^{ { {\pi} \over {2} } } \cos 0 dt = { {\pi} \over {2} } \\ I_{0} (2x) = \int_{0}^{ { {\pi} \over {2} } } \cos 2xt dt = \left[ {{\sin 2xt} \over {2x}} \right]_{0}^{{ {\pi} \over {2} }} = {{\sin \pi x} \over {2 x}} Therefore, I0(2x)I0(0)=sinπxπx=sincx {{I_{0} (2x)} \over {I_{0} (0)}}= {{\sin \pi x} \over {\pi x}} = \sinc x Consequently, we need to show I0(2x)I0(0)=n=1(1x2n2) {{I_{0} (2x)} \over {I_{0} (0)}}= \prod_{n=1}^{\infty} \left( 1 - {{x^2} \over { n^2}} \right) First, let’s express In(c)I_{n} (c) as a recurrence relation. In(c)=0π2cosntcosctdt=[1ccosntsinct]0π20π21cncosn1t(sint)sinctdt=nc0π2cosn1tsintsinctdt=nc[1ccosn1tsint(cosct)]0π2nc0π21c{(n1)cosn2t(sin2t)+cosnt}(cosct)dt=nc20π2{(n1)cosn2t(cos2t1)+cosnt}cosctdt=nc20π2{ncosnt(n1)cosn2t}cosctdt=nc2{nIn(c)(n1)In2(c)} \begin{align*} I_{n} (c) =& \int_{0}^{ { {\pi} \over {2} } } \cos ^{n} t \cos ct dt \\ =& \left[ {1 \over c} \cos^{n} t \sin c t \right]_{0}^{{ {\pi} \over {2} }} - \int_{0}^{ { {\pi} \over {2} } } {1 \over c} n \cos ^{n-1} t (-\sin t) \sin ct dt \\ =& {n \over c} \int_{0}^{ { {\pi} \over {2} } } \cos ^{n-1} t \sin t \sin ct dt \\ =& {n \over c} \left[ {1 \over c} \cos^{n-1} t \sin t (-\cos c t ) \right]_{0}^{{ {\pi} \over {2} }} \\ & - {n \over c} \int_{0}^{ { {\pi} \over {2} } } {1 \over c} \left\{ (n-1) \cos ^{n-2} t (-\sin^2 t) + \cos ^{n} t \right\} (-\cos ct) dt \\ =& {n \over {c^2} } \int_{0}^{ { {\pi} \over {2} } } \left\{ (n-1) \cos ^{n-2} t (\cos^2 t - 1) + \cos ^{n} t \right\} \cos ct dt \\ =& {n \over {c^2} } \int_{0}^{ { {\pi} \over {2} } } \left\{ n \cos ^{n} t - (n-1) \cos^{n-2} t \right\} \cos ct dt \\ =& {n \over {c^2} } \left\{ n I_{n}(c) - (n-1) I_{n-2}(c) \right\} \end{align*} Rewriting it neatly, we get the following. (n2c2)In(c)=(n2n)In2(c) (n^2 - c^2) I_{n} (c) = ( n^{2} - n) I_{n-2} (c)

Dividing each side by the equation obtained by substituting c=0c=0 into the above recurrence relation gives a new recurrence relation (n2c2)n2In(c)In(0)=In2(c)In2(0) { {(n^2 - c^2)} \over {n^2} } {{I_{n} (c)} \over {I_{n} (0)}} = { {I_{n-2} (c)} \over {I_{n-2} (0)} } Repeating in the new recurrence relation until the right side becomes I0(c)I0(0)\displaystyle { {I_{0} (c)} \over {I_{0} (0)} }, we obtain k=1m(2k)2c2(2k)2I2m(c)I2m(0)=I0(c)I0(0) \prod_{k=1}^{m} { {(2k)^2 - c^2} \over {(2k)^2} } {{I_{2m} (c)} \over {I_{2m} (0)}} = { {I_{0} (c)} \over {I_{0} (0)} } Substituting c=2xc=2x here, k=1m(2k)2(2x)2(2k)2I2m(2x)I2m(0)=I2m(2x)I2m(0)k=1mk2x2k2=I0(2x)I0(0) \begin{align*} & \prod_{k=1}^{m} { {(2k)^2 - (2x)^2} \over {(2k)^2} } {{I_{2m} (2x)} \over {I_{2m} (0)}} \\ = & {{I_{2m} (2x)} \over {I_{2m} (0)}} \prod_{k=1}^{m} { {k^2 - x^2} \over {k^2} } \\ = & {{I_{0} (2x)} \over {I_{0} (0)}} \end{align*}

Part 3. limmIm(2x)Im(0)=1\displaystyle \lim_{m \to \infty} {{I_{m} (2x)} \over {I_{m} (0)}}=1

Our goal is to show I0(2x)I0(0)=n=1(1x2n2)\displaystyle {{I_{0} (2x)} \over {I_{0} (0)}}= \prod_{n=1}^{\infty} \left( 1 - {{x^2} \over { n^2}} \right), so proving limmIm(2x)Im(0)=1\displaystyle \lim_{m \to \infty} {{I_{m} (2x)} \over {I_{m} (0)}}=1 will complete the proof. Now, consider Im(2x)=0π2cosmtcos2xtdt I_{m} (2x) = \int_{0}^{ { {\pi} \over {2} } } \cos ^{m} t \cos 2xt dt Since in Part 1 we have shown we can assume only x(0,1/2]x \in (0, 1/2], for t[0,1/2]t \in [0, 1/2] we obtain the following two inequalities. cos0>cos2xt    Im(0)>Im(2x)cos2xt>cos2t    Im(2x)>Im+2(0) \begin{align*} \cos 0 > \cos 2 x t \implies & I_{m} (0) > I_{m} (2x) \\ \cos 2 x t > \cos^{2} t \implies & I_{m} (2x) > I_{m+2} (0) \end{align*} Simplified, Im(0)>Im(2x)>Im+2(0) I_{m} (0) > I_{m} (2x) > I_{m+2} (0) Dividing each side by Im(0)I_{m} (0), 1>Im(2x)Im(0)>Im+2(0)Im(0) 1 > {{I_{m} (2x)} \over {I_{m} (0)} } > {{I_{m+2} (0)} \over {I_{m} (0)}} According to the recurrence relation obtained earlier, (m+2)2Im+2(0)=(m2+3m+2)Im(0) (m+2)^2 I_{m+2}(0) = (m^2 + 3m + 2) I_{m}(0) Thus, limmIm+2(0)Im(0)=limmm+1m+2=1 \lim_{m \to \infty} {{I_{m+2} (0)} \over {I_{m} (0)}} = \lim_{m \to \infty} { {m+1} \over {m+2} } = 1 According to the Sandwich Theorem, we obtain the following: sinπxπx=n=1(1x2n2) {{\sin \pi x} \over {\pi x}} = \prod_{n=1}^{\infty} \left( 1 - {{x^2} \over { n^2}} \right)

Although the result is highly useful, the proof itself is not something you can memorize and use elsewhere. It is recommended to just acknowledge such a proof exists rather than thoroughly understanding and mastering it step by step.

Corollary