logo

Orthogonality of Solutions to the Regular Sturm-Liouville Problem 📂Lebesgue Spaces

Orthogonality of Solutions to the Regular Sturm-Liouville Problem

Theorem1

Assume that λn,λm\lambda_{n}, \lambda_{m} are distinct eigenvalues of the regular S-L problem, and un,umu_{n}, u_{m} are the eigenfunctions corresponding to each eigenvalue with real values. Then, un,umu_{n}, u_{m} are orthogonal to each other in the Lw2(a,b)L_{w}^{2}(a,b) space. That is,

abun(x)um(x)w(x)dx=0 \int _{a} ^{b} u_{n}(x)u_{m}(x)w(x)dx=0

Explanation

Regular Sturm-Liouville Problem

The differential equation (1)(1) is defined on the interval [a,b][a,b] and is called a regular Sturm-Liouville problem when it satisfies the following two conditions:

(i)(\text{i}) For all x[a,b]x \in [a,b], p(x)>0p(x)>0, w(x)>0w(x)>0

(ii)(\text{ii}) (c1,c2)(0,0)(c_{1},c_{2})\ne (0,0) and for constants such that (d1,d2)(0,0)(d_{1},d_{2})\ne (0,0), the following boundary conditions are fulfilled:

{c1u(a)+c2u(a)=0d1u(b)+d2u(b)=0 \begin{cases} c_{1}u(a) + c_{2}u^{\prime}(a) =0 \\ d_{1}u(b) + d_{2}u^{\prime}(b) =0 \end{cases}

Proof

Since un,umu_{n}, u_{m} are solutions of the S-L problem, the following equation holds:

[p(x)un(x)]+[q(x)+λnw(x)]un(x)= 0[p(x)um(x)]+[q(x)+λmw(x)]um(x)= 0 \begin{align} \left[ p(x)u_{n}^{\prime}(x) \right]^{\prime}+\left[ q(x) +\lambda_{n} w(x) \right]u_{n}(x) =&\ 0 \\ \left[ p(x)u_{m}^{\prime}(x) \right]^{\prime}+\left[ q(x) +\lambda_{m} w(x) \right]u_{m}(x) =&\ 0 \end{align}

Calculating (1)×um(2)×un(1)\times u_{m}-(2)\times u_{n} yields:

[p(x)un(x)]um(x)+[q(x)+λnw(x)]un(x)um(x)[p(x)um(x)]un(x)[q(x)+λmw(x)]um(x)un(x)=0 \begin{align*} && & \left[ p(x)u^{\prime}_{n}(x) \right]^{\prime}u_{m}(x)+\left[ q(x)+\lambda_{n} w(x) \right]u_{n}(x)u_{m}(x) \\ && &- \left[ p(x)u^{\prime}_{m}(x) \right]^{\prime}u_{n}(x)-\left[ q(x)+\lambda_{m} w(x) \right]u_{m}(x)u_{n}(x) = 0 \end{align*}

    (λnλm)w(x)un(x)um(x)= [p(x)um(x)]un(x)[p(x)un(x)]um(x)= [(p(x)um(x))un(x)(p(x)un(x))um(x)] \begin{align*} \implies (\lambda_{n}-\lambda_{m})w(x)u_{n}(x)u_{m}(x)=&\ \left[ p(x)u^{\prime}_{m}(x) \right]^{\prime}u_{n}(x)-\left[ p(x)u^{\prime}_{n}(x) \right]^{\prime}u_{m}(x) \\ =&\ \left[ \left( p(x)u_{m}^{\prime}(x) \right)u_{n}(x)-\left( p(x)u_{n}^{\prime}(x) \right)u_{m}(x) \right] ^{\prime} \end{align*}

Now, integrating both sides of the above equation from aa to bb yields:

(λnλm)abun(x)um(x)w(x)dx= [(p(x)um(x))un(x)(p(x)un(x))um(x)]ab= p(b)[um(b)un(b)un(b)um(b)]p(a)[um(a)un(a)un(a)um(a)] \begin{equation} \begin{align*} \left( \lambda_{n}-\lambda_{m} \right)\int _{a} ^{b}u_{n}(x)u_{m}(x)w(x)dx =&\ \left[ \left( p(x)u_{m}^{\prime}(x) \right)u_{n}(x)-\left( p(x)u_{n}^{\prime}(x) \right)u_{m}(x) \right] _{a}^{b} \\ =&\ p(b)\left[ u_{m}^{\prime}(b) u_{n}(b)- u_{n}^{\prime}(b) u_{m}(b) \right] \\ & -p(a)\left[ u_{m}^{\prime}(a)u_{n}(a)-u_{n}^{\prime}(a) u_{m}(a) \right] \end{align*} \end{equation}

Due to the boundary conditions of the regular S-L problem, we obtain the following equation for (d1,d2)(0,0)(d_{1},d_{2})\ne (0,0):

d1un(b)+d2un(b)= 0d1um(b)+d2um(b)= 0 \begin{align} d_{1}u_{n}(b)+d_{2}u_{n}^{\prime}(b) =&\ 0 \\ d_{1}u_{m}(b)+d_{2}u_{m}^{\prime}(b) =&\ 0 \end{align}

Without loss of generality, let’s assume d10d_{1} \ne 0. Calculating (4)×um(b)(5)×un(b)(4)\times u_{m}^{\prime}(b)-(5)\times u_{n}^{\prime}(b) yields:

(d1un(b)+d2un(b))um(b)(d1um(b)+d2um(b))un(b)= 0    d1(un(b)um(b)um(b)un(b))= 0 \begin{align*} &&\left( d_{1}u_{n}(b)+d_{2}u_{n}^{\prime}(b) \right)u_{m}^{\prime}(b)-\left( d_{1}u_{m}(b)+d_{2}u_{m}^{\prime}(b) \right)u_{n}^{\prime}(b) =&\ 0 \\ \implies && d_{1}\left( u_{n}(b)u_{m}^{\prime}(b)-u_{m}(b)u_{n}^{\prime}(b) \right) =&\ 0 \end{align*}

However, since we assumed d10d_{1} \ne 0, it follows that (un(b)um(b)um(b)un(b))=0\left( u_{n}(b)u_{m}^{\prime}(b)-u_{m}(b)u_{n}^{\prime}(b) \right)=0. Therefore, we can see that the first term of the last line of (3)(3) becomes 00, and by the same logic, the second term of the last line of (3)(3) also becomes 00. Hence, we obtain the following equation:

(λnλm)abun(x)um(x)w(x)dx=0 \left( \lambda_{n}-\lambda_{m} \right)\int _{a} ^{b}u_{n}(x)u_{m}(x)w(x)dx=0

Since λnλm\lambda_{n} \ne \lambda_{m},

abun(x)um(x)w(x)dx=0 \int _{a} ^{b}u_{n}(x)u_{m}(x)w(x)dx=0

Corollary

Consider the Sturm-Liouville differential equation on a finite closed interval [a,b][a,b].

[p(x)u(x)]+[q(x)+λw(x)]u(x)=0 \left[ p(x)u^{\prime}(x) \right]^{\prime}+\left[ q(x) +\lambda w(x) \right]u(x)=0

Let’s say for all x(a,b)x\in(a,b), p(x)>0p(x)>0 and w(x)>0w(x)>0. Then,

(i)(\text{i}) when p(a)=p(b)=0p(a)=p(b)=0, equation (0)(0) holds.

(ii)(\text{ii}) if p(a)=p(b)p(a)=p(b), and u(a)=u(b)u(a)=u(b), u(a)=u(b)u^{\prime}(a)=u^{\prime}(b), then equation (0)(0) holds.

Proof

If (i)(\text{i}) or (ii)(\text{ii}), since the last line of (3)(3) all becomes 00, (0)(0) holds.


  1. Ole Christensen, Functions, Spaces, and Expansions: Mathematical Tools in Physics and Engineering (2010), p220-221 ↩︎