Properties of the Norm Associated with the Inner Product Defined in Inner Space
📂Hilbert SpaceProperties of the Norm Associated with the Inner Product Defined in Inner Space
Theorem
Given an inner space (X,⟨⋅,⋅⟩), one can naturally define the [norm] as in ∥⋅∥:=⟨⋅,⋅⟩ and the following properties hold.
(a) The Cauchy-Schwarz Inequality: For any x,y∈X,
∣⟨x,y⟩∣≤∥x∥∥y∥
(b) The Parallelogram Law: For any x,y∈X,
∥x+y∥2+∥x−y∥2=2(∥x∥2+∥y∥2)
(c) The polarization identity in a complex vector space: In a complex inner space X and for any x,y∈X,
⟨x,y⟩=41(∥x+y∥2−∥x−y∥2+i(∥x+iy∥2−∥x−iy∥2))
(d) The polarization identity in a real vector space: In a real inner space X and for any x,y∈X,
⟨x,y⟩=41(∥x+y∥2−∥x−y∥2)
(e) Norm versus inner product: For any x∈X,
∥x∥=sup{∣⟨x,y⟩∣:y∈X,∥y∥=1}
Proof
(a)
In an inner space, by the definition of norm, the Cauchy-Schwarz inequality is
∣⟨x,y⟩∣=≤⟨x,x⟩1/2⟨y,y⟩1/2 ∥x∥∥y∥
■
(b)
∥x+y∥2+∥x−y∥2===== ⟨x+y,x+y⟩+⟨x−y,x−y⟩ ⟨x,x⟩+⟨x,y⟩+⟨y,x⟩+⟨y,y⟩+⟨x,x⟩−⟨x,y⟩−⟨y,x⟩+⟨y,y⟩ 2⟨x,x⟩+2⟨y,y⟩ 2(⟨x,x⟩+⟨y,y⟩) 2(∥x∥2+∥y∥2)
■
(c)
Referencing the proof of (b), one can obtain the calculation result for the real part.
∥x+y∥2−∥x−y∥2= 2⟨x,y⟩+2⟨y,x⟩
Calculating the imaginary part yields:
∥x+iy∥2=== ⟨x+iy,x+iy⟩ ⟨x,x⟩+⟨x,iy⟩+⟨iy,x⟩+⟨iy,iy⟩ ⟨x,x⟩−i⟨x,y⟩+i⟨y,x⟩+⟨y,y⟩
And
∥x−iy∥2=== ⟨x−iy,x−iy⟩ ⟨x,x⟩−⟨x,iy⟩−⟨iy,x⟩+⟨iy,iy⟩ ⟨x,x⟩+i⟨x,y⟩−i⟨y,x⟩+⟨y,y⟩
Therefore
∥x+iy∥2−∥x−iy∥2=−2i⟨x,y⟩+2i⟨y,x⟩
Thus
==∥x+y∥2−∥x−y∥2+i(∥x+iy∥2−∥x−iy∥2) 2⟨x,y⟩+2⟨y,x⟩+2⟨x,y⟩−2⟨y,x⟩ 4⟨x,y⟩
■
(d)
If ⟨x,y⟩∈R then ⟨x,y⟩=⟨y,x⟩=⟨y,x⟩, thus
∥x+y∥2−∥x−y∥2== 2⟨x,y⟩+2⟨y,x⟩ 4⟨x,y⟩
■
(e)
By the Cauchy-Schwarz inequality,
∣⟨x,y⟩∣≤∥x∥∥y∥
Then the following equation holds:
∥y∥=1sup∣⟨x,y⟩∣≤∥x∥
At this time, if y=∥x∥x is taken as ∥y∥=1, then
∣⟨x,y⟩∣==== ⟨x,∥x∥x⟩ ∥x∥1⟨x,x⟩ ∥x∥1∥x∥2 ∥x∥
is satisfied, therefore
∥y∥=1sup∣⟨x,y⟩∣=∥x∥
■