logo

Properties of the Norm Associated with the Inner Product Defined in Inner Space 📂Hilbert Space

Properties of the Norm Associated with the Inner Product Defined in Inner Space

Theorem1

Given an inner space (X,,)\left( X, \langle \cdot,\cdot \rangle \right), one can naturally define the [norm] as in :=,\left\| \cdot \right\|:=\sqrt{\left\langle \cdot,\cdot \right\rangle } and the following properties hold.

(a) The Cauchy-Schwarz Inequality: For any x,yX\mathbf{x}, \mathbf{y}\in X,

x,yxy \left| \langle \mathbf{x},\mathbf{y} \rangle \right| \le \left\| \mathbf{x} \right\| \left\| \mathbf{y} \right\|

(b) The Parallelogram Law: For any x,yX\mathbf{x},\mathbf{y}\in X,

x+y2+xy2=2(x2+y2) \left\| \mathbf{x} + \mathbf{y} \right\|^{2} + \left\| \mathbf{x} - \mathbf{y} \right\|^{2} = 2 \left( \left\| \mathbf{x} \right\| ^{2}+ \left\| \mathbf{y} \right\| ^{2} \right)

(c) The polarization identity in a complex vector space: In a complex inner space XX and for any x,yX\mathbf{x},\mathbf{y}\in X,

x,y=14(x+y2xy2+i(x+iy2xiy2)) \langle \mathbf{x},\mathbf{y} \rangle = \frac{1}{4} \Big( \left\| \mathbf{x} + \mathbf{y} \right\|^{2} - \left\| \mathbf{x} - \mathbf{y} \right\|^{2} + i \left( \left\| \mathbf{x} + i\mathbf{y} \right\|^{2} - \left\| \mathbf{x} - i\mathbf{y} \right\|^{2} \right) \Big)

(d) The polarization identity in a real vector space: In a real inner space XX and for any x,yX\mathbf{x},\mathbf{y}\in X,

x,y=14(x+y2xy2) \langle \mathbf{x},\mathbf{y}\rangle = \frac{1}{4} \left( \left\| \mathbf{x}+\mathbf{y} \right\|^{2} - \left\| \mathbf{x}-\mathbf{y} \right\| ^{2} \right)

(e) Norm versus inner product: For any xX\mathbf{x} \in X,

x=sup{x,y:yX,y=1} \left\| \mathbf{x} \right\| =\sup \left\{ \left| \langle \mathbf{x},\mathbf{y} \rangle \right| : \mathbf{y}\in X, \left\| \mathbf{y} \right\| =1 \right\}

Proof

(a)

In an inner space, by the definition of norm, the Cauchy-Schwarz inequality is

x,yx,x1/2y,y1/2= xy \begin{align*} \left| \langle \mathbf{x},\mathbf{y}\rangle \right| & \le \langle \mathbf{x},\mathbf{x} \rangle^{1/2} \langle \mathbf{y},\mathbf{y} \rangle ^{1/2} \\ =&\ \left\| \mathbf{x} \right\| \left\| \mathbf{y} \right\| \end{align*}

(b)

x+y2+xy2= x+y,x+y+xy,xy= x,x+x,y+y,x+y,y+x,xx,yy,x+y,y= 2x,x+2y,y= 2(x,x+y,y)= 2(x2+y2) \begin{align*} \left\| \mathbf{x} + \mathbf{y} \right\|^{2} + \left\| \mathbf{x} - \mathbf{y} \right\|^{2} =&\ \langle \mathbf{x}+\mathbf{y}, \mathbf{x}+\mathbf{y}\rangle + \langle \mathbf{x}-\mathbf{y},\mathbf{x}-\mathbf{y} \rangle \\ =&\ \langle \mathbf{x},\mathbf{x} \rangle + \langle \mathbf{x},\mathbf{y}\rangle + \langle \mathbf{y},\mathbf{x} \rangle + \langle \mathbf{y},\mathbf{y} \rangle \\ & + \langle \mathbf{x},\mathbf{x} \rangle -\langle \mathbf{x},\mathbf{y}\rangle -\langle \mathbf{y},\mathbf{x} \rangle + \langle \mathbf{y},\mathbf{y} \rangle \\ =&\ 2 \langle \mathbf{x},\mathbf{x} \rangle + 2 \langle \mathbf{y},\mathbf{y} \rangle \\ =&\ 2 \left(\langle \mathbf{x},\mathbf{x} \rangle + \langle \mathbf{y},\mathbf{y} \rangle \right) \\ =&\ 2 \left( \left\| \mathbf{x} \right\|^{2} + \left\| \mathbf{y} \right\|^{2} \right) \end{align*}

(c)

Referencing the proof of (b), one can obtain the calculation result for the real part.

x+y2xy2= 2x,y+2y,x \begin{align*} \left\| \mathbf{x} + \mathbf{y} \right\|^{2} -\left\| \mathbf{x} - \mathbf{y} \right\|^{2} =&\ 2 \langle \mathbf{x},\mathbf{y}\rangle + 2 \langle \mathbf{y},\mathbf{x}\rangle \end{align*}

Calculating the imaginary part yields:

x+iy2= x+iy,x+iy= x,x+x,iy+iy,x+iy,iy= x,xix,y+iy,x+y,y \begin{align*} \left\| \mathbf{x} + i\mathbf{y} \right\|^{2} =&\ \langle \mathbf{x}+i\mathbf{y} , \mathbf{x}+i\mathbf{y} \rangle \\ =&\ \langle \mathbf{x},\mathbf{x}\rangle + \langle \mathbf{x},i\mathbf{y}\rangle + \langle i\mathbf{y},\mathbf{x}\rangle +\langle i\mathbf{y},i\mathbf{y}\rangle \\ =&\ \langle \mathbf{x},\mathbf{x}\rangle -i\langle \mathbf{x},\mathbf{y}\rangle + i\langle \mathbf{y},\mathbf{x}\rangle +\langle \mathbf{y},\mathbf{y} \rangle \end{align*}

And

xiy2= xiy,xiy= x,xx,iyiy,x+iy,iy= x,x+ix,yiy,x+y,y \begin{align*} \left\| \mathbf{x} - i\mathbf{y} \right\|^{2} =&\ \langle \mathbf{x}-i\mathbf{y} , \mathbf{x}-i\mathbf{y}\rangle \\ =&\ \langle \mathbf{x},\mathbf{x}\rangle - \langle \mathbf{x},i\mathbf{y}\rangle - \langle i\mathbf{y},\mathbf{x}\rangle +\langle i\mathbf{y},i\mathbf{y}\rangle \\ =&\ \langle \mathbf{x},\mathbf{x}\rangle +i\langle \mathbf{x},\mathbf{y}\rangle -i\langle \mathbf{y},\mathbf{x}\rangle +\langle \mathbf{y},\mathbf{y} \rangle \end{align*}

Therefore

x+iy2xiy2=2ix,y+2iy,x \left\| \mathbf{x} + i\mathbf{y} \right\|^{2} - \left\| \mathbf{x} - i\mathbf{y} \right\|^{2} = -2i \langle \mathbf{x},\mathbf{y} \rangle +2i\langle \mathbf{y},\mathbf{x} \rangle

Thus

x+y2xy2+i(x+iy2xiy2)= 2x,y+2y,x+2x,y2y,x= 4x,y \begin{align*} & \left\| \mathbf{x} + \mathbf{y} \right\|^{2} - \left\| \mathbf{x} - \mathbf{y} \right\|^{2} + i \left(\left\| \mathbf{x} + i\mathbf{y} \right\|^{2} - \left\| \mathbf{x} - i\mathbf{y} \right\|^{2} \right) \\ =&\ 2 \langle \mathbf{x},\mathbf{y} \rangle + 2 \langle \mathbf{y},\mathbf{x} \rangle +2\langle \mathbf{x},\mathbf{y} \rangle -2 \langle \mathbf{y},\mathbf{x} \rangle \\ =&\ 4 \langle \mathbf{x},\mathbf{y} \rangle \end{align*}

(d)

If x,yR\langle \mathbf{x},\mathbf{y} \rangle \in \mathbb{R} then x,y=y,x=y,x\langle \mathbf{x},\mathbf{y} \rangle=\overline{\langle \mathbf{y},\mathbf{x} \rangle}=\langle \mathbf{y},\mathbf{x} \rangle, thus

x+y2xy2= 2x,y+2y,x= 4x,y \begin{align*} \left\| \mathbf{x} + \mathbf{y} \right\| ^{2} -\left\| \mathbf{x} - \mathbf{y} \right\| ^{2} =&\ 2 \langle \mathbf{x},\mathbf{y}\rangle + 2 \langle \mathbf{y},\mathbf{x}\rangle \\ =&\ 4\langle \mathbf{x},\mathbf{y} \rangle \end{align*}

(e)

By the Cauchy-Schwarz inequality,

x,yxy \left| \left\langle \mathbf{x},\mathbf{y} \right\rangle \right| \le \left\| \mathbf{x} \right\| \left\| \mathbf{y} \right\|

Then the following equation holds:

supy=1x,yx \sup \limits_{\left\| \mathbf{y} \right\|=1 } \left| \left\langle \mathbf{x},\mathbf{y} \right\rangle \right| \le \left\| \mathbf{x} \right\|

At this time, if y=xx\mathbf{y}=\dfrac{\mathbf{x}}{\left\| \mathbf{x} \right\| } is taken as y=1\left\| \mathbf{y} \right\| = 1, then

x,y= x,xx= 1xx,x= 1xx2= x \begin{align*} \left| \left\langle \mathbf{x},\mathbf{y} \right\rangle \right| =&\ \left| \left\langle \mathbf{x}, \frac{\mathbf{x}}{\left\| \mathbf{x} \right\| } \right\rangle \right| \\ =&\ \frac{1}{\left\| \mathbf{x} \right\| } \left\langle \mathbf{x},\mathbf{x} \right\rangle \\ =&\ \frac{1}{\left\| \mathbf{x} \right\| }\left\| \mathbf{x} \right\|^{2} \\ =&\ \left\| \mathbf{x} \right\| \end{align*}

is satisfied, therefore

supy=1x,y=x \sup \limits_{\left\| \mathbf{y} \right\|=1 } \left| \left\langle \mathbf{x},\mathbf{y} \right\rangle \right| = \left\| \mathbf{x} \right\|


  1. Ole Christensen, Functions, Spaces, and Expansions: Mathematical Tools in Physics and Engineering (2010), p64-65 ↩︎