Case 2. If x=0, y=0 and ⟨x,y⟩∈R
By the definition of the inner product,
0≤=⟨x−⟨y,y⟩⟨x,y⟩y,x−⟨y,y⟩⟨x,y⟩y⟩ ⟨x,x⟩−⟨y,y⟩⟨x,y⟩⟨x,y⟩−⟨y,y⟩⟨x,y⟩⟨y,x⟩+⟨y,y⟩2⟨x,y⟩2⟨y,y⟩
Since ⟨x,y⟩∈R, then ⟨x,y⟩=⟨y,x⟩=⟨y,x⟩. Therefore,
0≤==⟨x,x⟩−2⟨y,y⟩⟨x,y⟩⟨x,y⟩+⟨y,y⟩2⟨x,y⟩2⟨y,y⟩ ⟨x,x⟩−2⟨y,y⟩⟨x,y⟩2+⟨y,y⟩⟨x,y⟩2 ⟨x,x⟩−⟨y,y⟩⟨x,y⟩2
Since ⟨y,y⟩>0, multiply both sides to get
⟹⟹0≤⟨x,y⟩2≤∣⟨x,y⟩∣≤⟨x,x⟩⟨y,y⟩−⟨x,y⟩2⟨x,x⟩⟨y,y⟩⟨x,x⟩1/2⟨y,y⟩1/2
Case 3. If x=0, y=0 and ⟨x,y⟩∈C
Let ∣λ∣=1 and choose one λ∈C that satisfies λ⟨x,y⟩∈[0,∞). Then,
∣⟨x,y⟩∣=∣λ∣∣⟨x,y⟩∣=∣λ⟨x,y⟩∣=λ⟨x,y⟩=⟨λx,y⟩
Therefore, by Case 2,
∣⟨x,y⟩∣=≤= ⟨λx,y⟩⟨λx,λx⟩1/2⟨y,y⟩1/2 ⟨x,x⟩1/2⟨y,y⟩1/2