logo

Inner Product Spaces and the Cauchy-Schwarz Inequality 📂Hilbert Space

Inner Product Spaces and the Cauchy-Schwarz Inequality

Theorem1

Let (H,,)(H, \langle \cdot ,\cdot \rangle) be an inner product space. Then, the following inequality holds, and it is called the Cauchy-Schwarz inequality.

x,yx,x1/2y,y1/2,x,yH \left| \langle x,y \rangle \right| \le \langle x,x \rangle^{1/2} \langle y,y \rangle ^{1/2},\quad \forall x,y \in H

Explanation

Since a norm can be defined from the inner product, it can also be expressed as the following equation.

x,yxy,x,yH \left| \left\langle x, y \right\rangle \right| \le \left\| x \right\| \left\| y \right\|,\quad \forall x,y\in H

Proof

  • Case 1. x=0x=0 or y=0y=0

    Without loss of generality, let it be x=0x=0. Then, by the definition of the inner product,

    0,y=0x,y=0x,y=0 \left| \langle 0,y \rangle \right| = \left| \langle 0x,y \rangle \right| =0\left| \langle x,y\rangle \right|=0

    Thus, it holds.

  • Case 2. If x0x\ne0, y0y\ne0 and x,yR\langle x,y \rangle \in \mathbb{R}

    By the definition of the inner product,

    0xx,yy,yy,xx,yy,yy= x,xx,yy,yx,yx,yy,yy,x+x,y2y,y2y,y \begin{align*} 0 \le& \left\langle x-\frac{\langle x,y \rangle}{\langle y,y \rangle} y, x-\frac{\langle x,y \rangle}{\langle y,y \rangle} y \right\rangle \\ =&\ \langle x,x \rangle - \frac{\langle x,y \rangle}{\langle y,y \rangle} \langle x,y \rangle -\frac{\langle x,y \rangle}{\langle y,y \rangle} \langle y,x \rangle +\frac{\langle x,y \rangle^{2}}{\langle y,y \rangle^{2}}\langle y,y \rangle \end{align*}

    Since x,yR\langle x,y \rangle \in \mathbb{R}, then x,y=y,x=y,x\langle x,y\rangle=\overline{\langle y,x \rangle}=\langle y,x \rangle. Therefore,

    0x,x2x,yy,yx,y+x,y2y,y2y,y= x,x2x,y2y,y+x,y2y,y= x,xx,y2y,y \begin{align*} 0 \le& \langle x,x \rangle - 2\frac{\langle x,y \rangle}{\langle y,y \rangle} \langle x,y \rangle +\frac{\langle x,y \rangle^{2}}{\langle y,y \rangle^{2}}\langle y,y \rangle \\ =&\ \langle x,x \rangle - 2\frac{\langle x,y \rangle^{2}}{\langle y,y \rangle} +\frac{\langle x,y \rangle^{2}}{\langle y,y \rangle} \\ =&\ \langle x,x \rangle - \frac{\langle x,y \rangle^{2}}{\langle y,y \rangle} \end{align*}

    Since y,y>0\langle y,y \rangle >0, multiply both sides to get

    0x,xy,yx,y2    x,y2x,xy,y    x,yx,x1/2y,y1/2 \begin{align*} && 0 \le& \langle x,x \rangle \langle y,y \rangle - \langle x,y \rangle ^{2} \\ \implies && \langle x,y \rangle ^{2} \le& \langle x,x \rangle \langle y,y \rangle \\ \implies && \left| \langle x,y \rangle \right| \le& \langle x,x \rangle ^{1/2} \langle y,y \rangle ^{1/2} \end{align*}

  • Case 3. If x0x\ne0, y0y\ne 0 and x,yC\langle x,y\rangle \in \mathbb{C}

    Let λ=1\left| \lambda \right| =1 and choose one λC\lambda \in \mathbb{C} that satisfies λx,y[0,)\lambda \langle x,y \rangle\in [0,\infty). Then,

    x,y=λx,y=λx,y=λx,y=λx,y \left| \langle x,y \rangle \right| =\left| \lambda \right| \left| \langle x,y \rangle \right|=\left| \lambda \langle x,y \rangle \right|= \lambda\langle x,y \rangle =\langle \lambda x,y \rangle

    Therefore, by Case 2,

    x,y= λx,yλx,λx1/2y,y1/2= x,x1/2y,y1/2 \begin{align*} \left| \langle x,y \rangle \right| =&\ \langle \lambda x,y \rangle \\ \le& \langle \lambda x, \lambda x \rangle ^{1/2} \langle y,y \rangle ^{1/2} \\ =&\ \langle x,x\rangle^{1/2}\langle y,y\rangle ^{1/2} \end{align*}


  1. Ole Christensen, Functions, Spaces, and Expansions: Mathematical Tools in Physics and Engineering (2010), p62-23 ↩︎