logo

Differentiable Function Properties 📂Analysis

Differentiable Function Properties

Theorem1

Let’s say f,g:[a,b]Rf, g : [a,b] \to \mathbb{R}. If f,gf,g is differentiable at x[a,b]x\in [a,b], then f+gf+g, fgfg, and f/gf/g are also differentiable at xx and the following equation holds.

(f+g)(x)=f(x)+g(x)(fg)(x)=f(x)g(x)+f(x)g(x)(fg)(x)=f(x)g(x)f(x)g(x)g2(x) \begin{align} (f+g)^{\prime}(x) &=f^{\prime}(x)+g^{\prime}(x) \\ (fg)^{\prime}(x) &= f^{\prime}(x)g(x)+f(x)g^{\prime}(x) \\ \left( \frac{f}{g} \right)^{\prime}(x) &= \frac{f^{\prime}(x)g(x)-f(x)g^{\prime}(x)}{g^{2}(x)} \end{align}

However, (3)(3) holds when g(x)0g(x)\ne 0.

Description

(2)(2) is commonly referred to as the product rule of differentiation.

Proof

(1)(1)

By the definition of differentiation and the properties of the limit of functions, the following is true.

(f+g)(x)=limtx(f+g)(x)(f+g)(t)xt=limtx(f(x)+g(x))(f(t)+g(t))xt=limtx(f(x)f(t))+(g(x)+g(t))xt=limtx[f(x)f(t)xt+g(x)+g(t)xt]=limtxf(x)f(t)xt+limtxg(x)+g(t)xt=f(x)+g(x) \begin{align*} (f+g)^{\prime}(x) &=\lim \limits_{t \to x} \frac{(f+g)(x)-(f+g)(t)}{x-t} \\ &= \lim \limits_{t \to x} \frac{(f(x)+g(x))-(f(t)+g(t))}{x-t} \\ &= \lim \limits_{t \to x} \frac{(f(x)-f(t))+(g(x)+g(t))}{x-t} \\ &= \lim \limits_{t \to x} \left[ \frac{f(x)-f(t)}{x-t}+\frac{g(x)+g(t)}{x-t} \right] \\ &= \lim \limits_{t \to x} \frac{f(x)-f(t)}{x-t}+ \lim \limits_{t \to x}\frac{g(x)+g(t)}{x-t} \\ &= f^{\prime}(x)+g^{\prime}(x) \end{align*}

(2)(2)

The following holds by the definition of differentiation and the properties of the limit of functions.

(fg)(x)=limtx(fg)(x)(fg)(t)xt=limtxf(x)g(x)f(t)g(t)xt=limtxf(x)g(x)f(t)g(x)+f(t)g(x)f(t)g(t)xt=limtx[f(x)g(x)f(t)g(x)xt+f(t)g(x)f(t)g(t)xt]=limtx[f(x)f(t)xtg(x)+f(t)g(x)g(t)xt]=limtx[f(x)f(t)xtg(x)]+limtx[f(t)g(x)g(t)xt]=limtxf(x)f(t)xtlimtxg(x)+limtxf(t)limtxg(x)g(t)xt=f(x)g(x)+f(x)g(x) \begin{align*} (fg)^{\prime}(x) &= \lim \limits_{t \to x} \frac{(fg)(x)-(fg)(t)}{x-t} \\ &= \lim \limits_{t \to x}\frac{f(x)g(x)-f(t)g(t)}{x-t} \\ &= \lim \limits_{t \to x}\frac{f(x)g(x) {\color{blue}-f(t)g(x)+f(t)g(x)}-f(t)g(t)}{x-t} \\ &= \lim \limits_{t \to x}\left[ \frac{f(x)g(x) -f(t)g(x)}{x-t} + \frac{f(t)g(x)-f(t)g(t)}{x-t} \right] \\ &= \lim \limits_{t \to x}\left[ \frac{f(x) -f(t)}{x-t}g(x) + f(t)\frac{g(x)-g(t)}{x-t} \right] \\ &= \lim \limits_{t \to x} \left[\frac{f(x) -f(t)}{x-t}g(x)\right] + \lim \limits_{t \to x} \left[ f(t)\frac{g(x)-g(t)}{x-t} \right] \\ &= \lim \limits_{t \to x}\frac{f(x) -f(t)}{x-t}\lim \limits_{t \to x}g(x) + \lim \limits_{t \to x} f(t)\lim \limits_{t \to x}\frac{g(x)-g(t)}{x-t} \\ &= f^{\prime}(x)g(x)+f(x)g^{\prime}(x) \end{align*}

(3)(3)

Proved by a similar method to (2)(2).

(fg)(x)=limtx(f/g)(x)(f/g)(t)xt=limtxf(x)/g(x)f(t)/g(t)xt=limtxf(x)/g(x)f(x)/g(t)+f(x)/g(t)f(t)/g(t)xt=limtx[f(x)/g(x)f(x)/g(t)xt+f(x)/g(t)f(t)/g(t)xt]=limtx[f(x)g(t)g(x)g(t)f(x)g(x)g(t)g(x)xt+f(x)g(x)g(t)g(x)f(t)g(x)g(t)g(x)xt]=limtx1g(x)g(t)[f(x)g(t)f(x)g(x)xt+f(x)g(x)f(t)g(x)xt]=limtx1g(x)g(t)[f(x)g(x)f(t)g(x)xtf(x)g(x)f(x)g(t)xt]=limtx1g(x)g(t)[f(x)f(t)xtg(x)f(x)g(x)g(t)xt]=limtx1g(x)g(t)limtx[f(x)f(t)xtg(x)f(x)g(x)g(t)xt]=1g2(x)[f(x)g(x)f(x)g(x)]=f(x)g(x)f(x)g(x)g2(x) \begin{align*} \left( \frac{f}{g} \right)^{\prime}(x) &= \lim \limits_{ t \to x } \frac{(f/g)(x) -(f/g)(t)}{x-t} \\ &= \lim \limits_{ t \to x } \frac{f(x)/g(x) -f(t)/g(t)}{x-t} \\ &= \lim \limits_{ t \to x } \frac{f(x)/g(x) {\color{blue}-f(x)/g(t)+f(x)/g(t)}- f(t)/g(t)}{x-t} \\ &= \lim \limits_{ t \to x } \left[ \frac{f(x)/g(x) - f(x)/g(t) }{x-t}+\frac{f(x)/g(t)-f(t)/g(t)}{x-t} \right] \\ &= \lim \limits_{ t \to x } \left[ \frac{\frac{f(x){\color{blue}g(t)}}{g(x){\color{blue}g(t)}} -\frac{f(x){\color{blue}g(x)}}{g(t){\color{blue}g(x)}} }{x-t}+\frac{\frac{f(x){\color{blue}g(x)}}{g(t){\color{blue}g(x)}}-\frac{f(t){\color{blue}g(x)}}{g(t){\color{blue}g(x)}}}{x-t} \right] \\ &= \lim \limits_{ t \to x } \frac{1}{g(x)g(t)} \left[ {\color{red}\frac{f(x)g(t)-f(x)g(x) }{x-t}}+\frac{f(x)g(x)-f(t)g(x)}{x-t} \right] \\ &= \lim \limits_{ t \to x }\frac{1}{g(x)g(t)} \left[\frac{f(x)g(x)-f(t)g(x)}{x-t}{\color{red}-\frac{f(x)g(x)-f(x)g(t) }{x-t}} \right] \\ &= \lim \limits_{ t \to x }\frac{1}{g(x)g(t)} \left[\frac{f(x)-f(t)}{x-t}g(x)-f(x)\frac{g(x)-g(t) }{x-t} \right] \\ &= \lim \limits_{ t \to x }\frac{1}{g(x)g(t)} \lim \limits_{ t \to x } \left[\frac{f(x)-f(t)}{x-t}g(x)-f(x)\frac{g(x)-g(t) }{x-t} \right] \\ &= \frac{1}{g^{2}(x)}\left[ f^{\prime}(x)g(x)-f(x)g^{\prime}(x) \right] \\ &= \frac{f^{\prime}(x)g(x)-f(x)g^{\prime}(x)}{g^{2}(x)} \end{align*}


  1. Walter Rudin, Principles of Mathmatical Analysis (3rd Edition, 1976), p104-105 ↩︎