logo

Proof that the Dirac Delta Function is Not a Regularized Distribution 📂Distribution Theory

Proof that the Dirac Delta Function is Not a Regularized Distribution

Theorem1

δ(ϕ):=ϕ(0),ϕD \delta (\phi) := \phi (0), \quad \phi \in \mathcal{D}

As defined above, the Dirac delta function is not a regular distribution. Distributions that are not regular are called singular distributions.

Description

A regular distribution refers to a distribution that is defined with the existence of a locally integrable function uu as follows:

Tu(ϕ):=u(x)ϕ(x)dx,ϕD T_{u}(\phi) := \int u(x) \phi (x) dx,\quad \phi \in \mathcal{D}

The statement that the Dirac delta function is not a regular distribution means that there is no locally integrable uu that satisfies the conditions below:

∄u s.t. u(x)ϕ(x)dx=δ(ϕ)=ϕ(0),ϕD \not\exists u\ \text{s.t. } \int u(x)\phi (x)dx = \delta (\phi) = \phi (0),\quad \phi \in \mathcal{D}

Proof

Proof by contradiction.


Let’s assume that there exists a locally integrable function uu that satisfies the following equation.

u(x)ϕ(x)dx=δ(ϕ)=ϕ(0),ϕD \begin{equation} \int u(x)\phi (x)dx =\delta (\phi)=\phi (0),\quad \phi \in \mathcal{D} \label{eq1} \end{equation}

Now, consider the following test function.

η(x)={e1x21,x<10x1,ηm(x)=η(mx)={e1(mx)21,mx<10mx1,mN \begin{equation} \eta (x) =\begin{cases} e^{\frac{1}{x^{2}-1}} ,& \left| x \right| <1 \\ 0 & \left| x \right| \ge 1 \end{cases},\quad \eta_{m}(x)=\eta (mx)=\begin{cases} e^{\frac{1}{(mx)^{2}-1}} ,& \left| mx \right| <1 \\ 0 & \left| mx \right| \ge 1 \end{cases} ,\quad \forall m\in \mathbb{N} \label{eq2} \end{equation}

Then, the graph of ηm\eta _{m} is as follows.

untitled.png

Moreover, for all mm, ηm(0)=η(0)=e1\eta_{m}(0)=\eta (0)=e^{-1} is satisfied, and the support is supp ηm=[1m,1m]\mathrm{supp}\ \eta_{m}=[{\textstyle -\frac{1}{m}},{\textstyle \frac{1}{m}}]. Therefore, the integral of (eq1)\eqref{eq1} can be written as follows.

δ(ηm)=Ru(x)ηm(x)dx=1m1mu(x)ηm(x)dx=ηm(0)=e1 \begin{align*} \delta (\eta_{m})&=\int _{\mathbb{R}} u(x) \eta_{m}(x)dx \\ &=\int_{-{\textstyle \frac{1}{m}}}^{{\textstyle \frac{1}{m}}}u(x)\eta_{m}(x)dx \\ &=\eta_{m}(0) \\ &=e^{-1} \end{align*}

Taking the limit of mm \to \infty to the above equation gives the following.

limm1m1mu(x)ηm(x)dx=e1 \begin{equation} \lim \limits_{m\to\infty} \int _{-{\textstyle \frac{1}{m}}}^{{\textstyle \frac{1}{m}}}u(x)\eta_{m}(x)dx =e^{-1} \label{eq3} \end{equation}

Also, considering (eq2)\eqref{eq2}, the image of ηm\eta_{m} is [0,e1][0,e^{-1}]. Therefore, ηm\eta_{m} is bounded by e1e^{-1}. By the condition that uu is also integrable, it is bounded by some M>0M>0. Thus, the following holds.

1m1mu(x)ηm(x)dx=Rχ[1m,1m](x)u(x)ηm(x)dxRe1χ[1m,1m](x)u(x)dxe12mM \begin{align*} \int_{-{\textstyle \frac{1}{m}}}^{{\textstyle \frac{1}{m}}}u(x)\eta_{m}(x)dx &= \int_{\mathbb{R}}\chi_{[-{\textstyle \frac{1}{m}},{\textstyle \frac{1}{m}}]}(x)u(x)\eta_{m}(x)dx \\ &\le \int_{\mathbb{R}}e^{-1}\left| \chi_{[-{\textstyle \frac{1}{m}},{\textstyle \frac{1}{m}}]}(x)u(x) \right|dx \\ &\le e^{-1}\frac{2}{m}M \end{align*}

Then, by the Dominated Convergence Theorem, the following equation holds.

limm1m1mu(x)ηm(x)dx=limmRχ[1m,1m](x)u(x)ηm(x)dx=Rlimmχ[1m,1m](x)u(x)ηm(x)dx=0 \begin{equation} \begin{aligned} \lim \limits_{m \to \infty} \int_{-{\textstyle \frac{1}{m}}}^{{\textstyle \frac{1}{m}}}u(x)\eta_{m}(x)dx &= \lim \limits_{m \to \infty} \int_{\mathbb{R}}\chi_{[-{\textstyle \frac{1}{m}},{\textstyle \frac{1}{m}}]}(x)u(x)\eta_{m}(x)dx \\ &= \int_{\mathbb{R}}\lim \limits_{m \to \infty}\chi_{[-{\textstyle \frac{1}{m}},{\textstyle \frac{1}{m}}]}(x)u(x)\eta_{m}(x)dx \\ & = 0 \end{aligned} \label{eq4} \end{equation}

(eq3)\eqref{eq3} and (eq4)\eqref{eq4} contradict each other, so we can conclude that the assumption was wrong. Therefore, the Dirac delta function is not a regular distribution.


  1. Daniel Eceizabarrena perez, Distribution Theory and Fundamental Solutions of Differential Operators (2015), p5-6 ↩︎