Hyperbolic Functions' Identities
📂FunctionsHyperbolic Functions' Identities
sinh(−x)=cosh(−x)=tanh(−x)=coshx+sinhx=coshx−sinhx=cosh2x−sinh2x= −sinhx coshx −tanhx ex e−x 1
Explanation
There’s really no proof needed. This can be directly known from the definition.
Proof
Proof of (1)
sinh(−x)=== 2e−x−ex−2ex−e−x−sinhx
■
Proof of (2)
cosh(−x)=== 2e−x+ex 2ex+e−x coshx
■
Proof of (3)
tanh(−x)=cosh(−x)sinh(−x)=coshx−sinhx=−tanhx
■
Proof of (4)
coshx+sinhx== 2ex+e−x+2ex−e−x ex
■
Proof of (5)
coshx−sinhx== 2ex+e−x−2ex−e−x e−x
■
Proof of (6)
cosh2x−sinh2x==== 4(ex+e−x)2−4(ex−e−x)2 4(e2x+e−2x+2)−(e2x+e−x−2) 44 1
■