logo

Properties of Converging Real Sequences 📂Analysis

Properties of Converging Real Sequences

Theorem 1[^1]

Let {sn}\left\{ s_{n} \right\}, {tn}\left\{ t_{n} \right\} be sequences of real (or complex) numbers and assume that limnsn=s\lim \limits_{n\to\infty} s_{n}=s, limntn=t\lim\limits_{n\to\infty}t_{n}=t. Then

  • (a) limn(sn+tn)=s+t\lim \limits_{n\to\infty}(s_{n}+t_{n})=s+t

  • (b) cC,limncsn=csandlimn(c+sn)=c+s\forall c \in \mathbb{C},\quad\lim \limits_{n\to\infty} cs_{n}=cs \quad \text{and} \quad \lim \limits_{n\to\infty} (c+s_{n})=c+s

  • (c) limnsntn=st\lim \limits_{n\to\infty} s_{n}t_{n}=st

  • (d) sn0,s0,limn1sn=1s\forall s_{n}\ne 0,s\ne0,\quad \lim \limits_{n\to\infty}\frac{1}{s_{n}}=\frac{1}{s}


Of course, this can be extended to Rk\mathbb{R}^{k} as well. See Theorem 2 for a deeper look.

Proof

(a)

Given any positive number ε>0\varepsilon>0, there exist two positive numbers N1N_{1}, N2N_{2} satisfying the following condition.

nN1    sns<ε2nN2    tnt<ε2 \begin{align*} n \ge N_{1} &\implies \left|s_{n}-s \right|<\frac{\varepsilon}{2} \\ n \ge N_{2} & \implies \left|t_{n}-t \right|<\frac{\varepsilon}{2} \end{align*}

Now let’s assume that N=max(N1,N2)N=\max(N_{1},N_{2}). For nNn \ge N,

(sn+tn)(s+t)sns+tnt<ε \left| (s_{n}+t_{n})-(s+t) \right| \le\left| s_{n}-s \right|+\left| t_{n} -t\right|<\varepsilon

Therefore,

limn(sn+tn)=s+t \lim \limits_{n\to\infty} (s_{n}+t_{n})=s+t

(b)

This trivially holds due to the validity of (a).

(c)(c)

Given any positive number ε>0\varepsilon >0, there exist two positive numbers N1N_{1}, N2N_{2} that satisfy the following equation.

nN1    sns<εnN2    tnt<ε \begin{align*} n \ge N_{1} &\implies \left|s_{n}-s \right|<\sqrt{\varepsilon} \\ n \ge N_{2} & \implies \left|t_{n}-t \right|< \sqrt{\varepsilon} \end{align*}

Now let’s assume that N=max(N1,N2)N=\max (N_{1},N_{2}). Therefore,

nN    (sns)(tnt)<ε n \ge N \implies \left| (s_{n}-s) (t_{n}-t) \right|<\varepsilon

Hence,

limn(sns)(tnt)=0 \begin{equation} \lim \limits_{n\to\infty} (s_{n}-s)(t_{n}-t)=0 \label{eq1} \end{equation}

At this moment,

sntnst=(sns)(tnt)+s(tnt)+t(sns) s_{n}t_{n}-st=(s_{n} -s)(t_{n}-t)+s(t_{n}-t)+t(s_{n}-s)

Applying (a), (b), and (eq1)\eqref{eq1} to the above equation gives

limn(sntnst)=limn(sns)(tnt)+limns(tnt)+limnt(sns)=0+0+0=0 \begin{align*} \lim \limits_{n\to\infty} (s_{n}t_{n}-st)&=\lim \limits_{n\to\infty}(s_{n}-s)(t_{n}-t)+\lim \limits_{n\to\infty}s(t_{n}-t)+\lim \limits_{n\to\infty}t(s_{n}-s) \\ &= 0+0+ 0 \\ &= 0 \end{align*}

Therefore,

limnsntn=st \lim \limits_{n\to\infty} s_{n}t_{n}=st

(d)

Given the assumption of limnsn=s\lim \limits_{n\to\infty} s_{n}=s, one can choose a positive number mm that satisfies the following equation.

nm,sns<12s \forall n\ge m,\quad \left|s_{n}-s \right| < \frac{1}{2}\left|s \right|

Since ssnsns\left|s \right|-\left|s_{n} \right| \le \left|s_{n}-s \right|, from the above equation, we can derive the following equation.

nm,sn>12s \begin{equation} \forall n \ge m,\quad \left|s_{n} \right|>\frac{1}{2}\left|s \right| \label{eq2} \end{equation}

Now, given any positive number ε>0\varepsilon>0, there exists a NN satisfying the equation below.

nN    sns<12s2ε \begin{equation} n \ge N \implies \left|s_{n}-s \right| < \frac{1}{2}\left|s \right|^{2}\varepsilon \label{eq3} \end{equation}

Therefore, by (eq2)\eqref{eq2} and (eq3)\eqref{eq3}, for nNn \ge N,

1sn1s=snssns<2s2sns<ε \left|\frac{1}{s_{n}}-\frac{1}{s} \right|=\left|\frac{s_{n}-s}{s_{n}s} \right|<\frac{2}{\left|s \right|^{2}}\left|s_{n}-s \right|<\varepsilon

thus,

limn1sn=1s \lim \limits_{n\to\infty}\frac{1}{s_{n}}=\frac{1}{s}