logo

Proof of Exponential Auxiliary Lemma 📂Number Theory

Proof of Exponential Auxiliary Lemma

Theorem

nNn \in \mathbb{N}, x,yZx , y \in \mathbb{Z}, prime numbers p2p \ne 2 satisfy gcd(n,p)=1p(xy)pxpy \gcd (n,p) = 1 \\ p \mid (x - y) \\ p \nmid x \\ p \nmid y then vp(xnyn)=vp(xy)+vp(n) v_{p} \left( x^{n} - y^{n} \right) = v_{p} \left( x - y \right) + v_{p} (n)

Proof 1

Strategy: It naturally follows from the properties of pp-ary expansion. However, proving those properties is quite lengthy. The key is to present those properties first, which can be proved with elementary number theory knowledge, so don’t be intimidated and give it a try.

Lemma (Properties of pp-ary):

  • [3]: nNn \in \mathbb{N}, x,yZx , y \in \mathbb{Z}, prime numbers pp satisfy gcd(n,p)=1p(xy)pxpy \gcd (n,p) = 1 \\ p \mid (x \mp y) \\ p \nmid x \\ p \nmid y then vp(xn±yn)=vp(x±y) v_{p} \left( x^{n} \pm y^{n} \right) = v_{p} \left( x \pm y \right)
  • [4]: x,yZx , y \in \mathbb{Z}, prime numbers p2p \ne 2 satisfy p(xy)pxpy p \mid (x - y) \\ p \nmid x \\ p \nmid y then vp(xpyp)=vp(xy)+1 v_{p} \left( x^{p} - y^{p} \right) = v_{p} \left( x - y \right) +1

n:=pαbgcd(p,b)=1 n := p^{\alpha} b \\ \gcd (p,b) = 1 By choosing a natural number n,b,αn, b , \alpha that satisfies the above two conditions, we get vp(n)=αv_{p} (n) = \alpha. Then, by using the lemma [3], vp(xnyn)=vp([xpα]b[ypα]b)=vp(xpαypα)=vp([xpα1]p[ypα1]p) \begin{align*} v_{p} \left( x^{n} - y^{n} \right) =& v_{p} \left( \left[ x^{p^{\alpha}} \right]^{b} - \left[ y^{p^{\alpha}} \right]^{b} \right) \\ =& v_{p} \left( x^{p^{\alpha}} - y^{p^{\alpha}} \right) \\ =& v_{p} \left( \left[ x^{p^{\alpha - 1}} \right]^{p} - \left[ y^{p^{\alpha - 1}} \right]^{p} \right) \end{align*} Solving recursively using lemma [4] gives vp([xpα1]p[ypα1]p)=vp([xpα1][ypα1])+1=vp([xpα2]p[ypα2]p)+1=vp([xpα2][ypα2])+2=vp(xy)+α=vp(xy)+vp(n) \begin{align*} v_{p} \left( \left[ x^{p^{\alpha - 1}} \right]^{p} - \left[ y^{p^{\alpha - 1}} \right]^{p} \right) =& v_{p} \left( \left[ x^{p^{\alpha - 1}} \right] - \left[ y^{p^{\alpha - 1}} \right] \right) + 1 \\ =& v_{p} \left( \left[ x^{p^{\alpha - 2}} \right]^{p} - \left[ y^{p^{\alpha - 2}} \right]^{p} \right) + 1 \\ =& v_{p} \left( \left[ x^{p^{\alpha - 2}} \right] - \left[ y^{p^{\alpha - 2}} \right] \right) + 2 \\ &\vdots& \\ =& v_{p}(x-y) + \alpha \\ =& v_{p}(x-y) + v_{p} (n) \end{align*} In conclusion, we obtain the following. vp(xnyn)=vp(xy)+vp(n) v_{p} \left( x^{n} - y^{n} \right) = v_{p} \left( x - y \right) + v_{p} (n)