The Fundamental Theorem of Calculus in Analysis
📂Analysis The Fundamental Theorem of Calculus in Analysis Theorem Let’s say f f f is a function that is Riemann integrable over the interval [ a , b ] [a,b] [ a , b ] . And let’s define F F F for a ≤ x ≤ b a\le x \le b a ≤ x ≤ b as follows.
F ( x ) = ∫ a x f ( t ) d t
F(x) = \int _{a} ^{x} f(t)dt
F ( x ) = ∫ a x f ( t ) d t
(a) Then, F F F is continuous over [ a , b ] [a,b] [ a , b ] .(b) If f f f is continuous over x 0 ∈ [ a , b ] x_{0}\in [a,b] x 0 ∈ [ a , b ] , then F F F is differentiable over x 0 x_{0} x 0 and satisfies F ′ ( x 0 ) = f ( x 0 ) F^{\prime}(x_{0})=f(x_{0}) F ′ ( x 0 ) = f ( x 0 ) .Explanation This is known by the name Fundamental Theorem of Calculus 1, often abbreviated as FTC1. It means that if F F F , defined as the definite integral of f f f , is differentiable, then it has f f f as its derivative.
Proof (a) Since we assume that f f f is integrable , it is bounded. Thus, M = sup [ a , b ] ∣ f ∣ < ∞ M=\sup \limits_{[a,b]}\left| f \right| <\infty M = [ a , b ] sup ∣ f ∣ < ∞ . If M = 0 M=0 M = 0 , then it is trivial that f = F = 0 f=F=0 f = F = 0 . Therefore, let’s say M > 0 M>0 M > 0 . And let’s say a ≤ x < y ≤ b a\le x< y \le b a ≤ x < y ≤ b . Since integrability is preserved within the interval , the following holds.
∣ F ( y ) − F ( x ) ∣ = ∣ ∫ a y f ( t ) d t − ∫ a x f ( t ) d t ∣ = ∣ ∫ a x f ( t ) d t + ∫ x y f ( t ) d t − ∫ a x f ( t ) d t ∣ = ∣ ∫ x y f ( t ) d t ∣
\begin{equation}
\begin{aligned}
\left| F(y)-F(x) \right| &= \left| {\color{blue}\int_{a}^{y}f(t)dt}-\int_{a}^{x}f(t)dt \right|
\\ &= \left| {\color{blue} \int_{a}^{x}f(t)dt+\int_{x}^{y}f(t)dt}-\int_{a}^{x}f(t)dt \right|
\\ &= \left| \int_{x}^{y}f(t)dt \right|
\end{aligned}
\label{eq1}
\end{equation}
∣ F ( y ) − F ( x ) ∣ = ∫ a y f ( t ) d t − ∫ a x f ( t ) d t = ∫ a x f ( t ) d t + ∫ x y f ( t ) d t − ∫ a x f ( t ) d t = ∫ x y f ( t ) d t
Also, since the absolute value of the integral is less than the integral of the absolute value , the following holds.
∣ F ( y ) − F ( x ) ∣ = ∣ ∫ x y f ( t ) d t ∣ ≤ ∫ x y ∣ f ( t ) ∣ d t ≤ ∫ x y M d t = M ( y − x )
\begin{equation}
\begin{aligned}
\left| F(y)-F(x) \right| &= \left| \int_{x}^{y}f(t)dt \right|
\\ & \le \int_{x}^{y}\left| f(t) \right|dt
\\ &\le \int_{x}^{y}Mdt
\\ &= M(y-x)
\end{aligned}
\label{eq2}
\end{equation}
∣ F ( y ) − F ( x ) ∣ = ∫ x y f ( t ) d t ≤ ∫ x y ∣ f ( t ) ∣ d t ≤ ∫ x y M d t = M ( y − x )
Summarizing these, we get the following.
∣ F ( x ) − F ( y ) ∣ ≤ M ( y − x )
\left| F(x)-F(y) \right| \le M(y-x)
∣ F ( x ) − F ( y ) ∣ ≤ M ( y − x )
Now, let’s assume an arbitrary positive number ε > 0 \varepsilon >0 ε > 0 is given. And say δ = ε M \delta = \dfrac{\varepsilon}{M} δ = M ε . Then, we can observe the following holds.
∣ y − x ∣ < δ ⟹ ∣ F ( y ) − F ( x ) ∣ < ε , ∀ x , y ∈ [ a , b ]
\left|y-x \right| <\delta \quad \implies \quad \left|F(y)-F(x) \right|<\varepsilon,\quad \forall x,y \in [a,b]
∣ y − x ∣ < δ ⟹ ∣ F ( y ) − F ( x ) ∣ < ε , ∀ x , y ∈ [ a , b ]
Therefore, by the definition of a continuous function , F F F is continuous .
■
(b) Let’s say an arbitrary positive number ε > 0 \varepsilon >0 ε > 0 is given. Assuming that f f f is continuous over x 0 x_{0} x 0 , by the definition the following δ > 0 \delta >0 δ > 0 exists.
∣ x − x 0 ∣ < δ ⟹ ∣ f ( x ) − f ( x 0 ) ∣ < ε , x ∈ [ a , b ]
\begin{equation}
\left|x-x_{0} \right| <\delta \quad \implies \quad \left|f(x)-f(x_{0}) \right|<\varepsilon,\quad x\in[a,b]
\label{eq3}
\end{equation}
∣ x − x 0 ∣ < δ ⟹ ∣ f ( x ) − f ( x 0 ) ∣ < ε , x ∈ [ a , b ]
Then, proving the following by the definition of derivative concludes the proof.
F ′ ( x 0 ) : = lim x → x 0 F ( x ) − F ( x 0 ) x − x 0 = f ( x 0 )
F^{\prime}(x_{0}) := \lim \limits_{x\to x_{0}}\frac{F(x)-F(x_{0})}{x-x_{0}} = f(x_{0})
F ′ ( x 0 ) := x → x 0 lim x − x 0 F ( x ) − F ( x 0 ) = f ( x 0 )
Let’s say t ∈ [ a , b ] t \in [a,b] t ∈ [ a , b ] satisfies x 0 < t < x 0 + δ x_{0} < t <x_{0}+\delta x 0 < t < x 0 + δ . (The process is the same even for the case of x 0 − δ < t < x 0 x_{0}-\delta < t < x_{0} x 0 − δ < t < x 0 , only the sign changes a little.) Then, the following holds.
∣ F ( t ) − F ( x 0 ) t − x 0 − f ( x 0 ) ∣ = ∣ 1 t − x 0 ( ∫ a t f ( x ) d x − ∫ a x 0 f ( x ) d x ) − f ( x 0 ) ∣ = ∣ 1 t − x 0 ∫ x 0 t f ( x ) d x − f ( x 0 ) ∣ = ∣ 1 t − x 0 ∫ x 0 t f ( x ) d x − 1 t − x 0 ∫ x 0 t f ( x 0 ) d x ∣ = ∣ 1 t − x 0 ∫ x 0 t ( f ( x ) − f ( x 0 ) ) d x ∣ < ∣ 1 t − x 0 ∫ x 0 t ε d x ∣ < ∣ 1 t − x 0 ε ( t − x 0 ) ∣ = ε
\begin{align*}
\left| \frac{F(t)-F(x_{0})}{t-x_{0}}-f(x_{0}) \right| &=\left| \frac{1}{t-x_{0}}\left( \int_{a}^{t}f(x)dx-\int_{a}^{x_{0}}f(x)dx \right) -f(x_{0}) \right|
\\ &=\left|\frac{1}{t-x_{0}} \int_{x_{0}}^{t}f(x)dx -f(x_{0}) \right|
\\ &=\left| \frac{1}{t-x_{0}} \int_{x_{0}}^{t}f(x)dx -\frac{1}{t-x_{0}}\int_{x_{0}}^{t}f(x_{0})dx \right|
\\ &=\left| \frac{1}{t-x_{0}} \int_{x_{0}}^{t}\left( f(x)-f(x_{0}) \right)dx \right|
\\ &< \left| \frac{1}{t-x_{0}} \int_{x_{0}}^{t}\varepsilon dx \right|
\\ &< \left| \frac{1}{t-x_{0}}\varepsilon (t-x_{0}) \right|
\\ &= \varepsilon
\end{align*}
t − x 0 F ( t ) − F ( x 0 ) − f ( x 0 ) = t − x 0 1 ( ∫ a t f ( x ) d x − ∫ a x 0 f ( x ) d x ) − f ( x 0 ) = t − x 0 1 ∫ x 0 t f ( x ) d x − f ( x 0 ) = t − x 0 1 ∫ x 0 t f ( x ) d x − t − x 0 1 ∫ x 0 t f ( x 0 ) d x = t − x 0 1 ∫ x 0 t ( f ( x ) − f ( x 0 ) ) d x < t − x 0 1 ∫ x 0 t ε d x < t − x 0 1 ε ( t − x 0 ) = ε
The second equality holds for the same reason that ( eq1 ) \eqref{eq1} ( eq1 ) holds. The third equality holds for the same reason that ( eq2 ) \eqref{eq2} ( eq2 ) holds. The fourth equality holds because integration is linear . The first inequality holds due to ( eq3 ) \eqref{eq3} ( eq3 ) . Since ε \varepsilon ε is an arbitrary positive number, we obtain the following.
F ( t ) − F ( x 0 ) t − x 0 = f ( x 0 )
\frac{F(t)-F(x_{0})}{t-x_{0}}=f(x_{0})
t − x 0 F ( t ) − F ( x 0 ) = f ( x 0 )
Therefore, the following holds.
F ′ ( x 0 ) = lim t → x 0 F ( t ) − F ( x 0 ) t − x 0 = lim t → x 0 f ( x 0 ) = f ( x 0 )
F^{\prime}(x_{0})=\lim \limits_{t\to x_{0}}\frac{F(t)-F(x_{0})}{t-x_{0}}=\lim \limits_{t\to x_{0}}f(x_{0})=f(x_{0})
F ′ ( x 0 ) = t → x 0 lim t − x 0 F ( t ) − F ( x 0 ) = t → x 0 lim f ( x 0 ) = f ( x 0 )
Thus, F F F is differentiable over x 0 x_{0} x 0 , and the derivative value over x 0 x_{0} x 0 is as f ( x 0 ) f(x_{0}) f ( x 0 ) .
■
See also