logo

Orbit Equation of a Particle under Central Force 📂Classical Mechanics

Orbit Equation of a Particle under Central Force

Orbit Equation of a Particle Subject to Central Force1

A particle of mass $m$ subject to a central force can be described by its motion equation in polar coordinates as follows.

$$ \begin{equation} m\ddot{\mathbf{r}}=F(r)\hat{\mathbf{r}} \label{eq1} \end{equation} $$

$F(r)$ represents the central force acting on the particle. The acceleration in polar coordinates can be expressed as:

$$ \ddot{\mathbf{r}}=\mathbf{a}=\left( \ddot{r}-r\dot{\theta}{}^{2} \right)\hat{\mathbf{r}} +\left(2\dot{r}\dot{\theta}+r\ddot{\theta} \right)\hat{\boldsymbol{\theta}} $$

Hence, separating the motion equation $\eqref{eq1}$ into components yields:

$$ \begin{align} m\left( \ddot{r}-r\dot{\theta}{}^{2} \right) &= F(r) \label{eq2} \\ m\left( 2\dot{r} \dot{\theta} +r\ddot{\theta}\right) &= 0 \nonumber \end{align} $$

Given that $\frac{1}{r}\frac{ d }{ dt }(r^{2}\dot{\theta})=2\dot{r} \dot{\theta} +r\ddot{\theta}$, the second equation can be rewritten as:

$$ \frac{ d }{ d t }(r^{2}\dot{\theta})=0 $$

This implies that $r^{2}\dot{\theta}$ is a constant. Let’s define this constant as $l$.

$$ \begin{equation} r^{2}\dot{\theta}=\text{constant}=l \label{eq3} \end{equation} $$

Meanwhile, the magnitude of the angular momentum of a particle moving under a central force is as follows.

$$ \begin{equation} L=mr^{2}\dot{\theta} \tag{4} \label{eq4} \end{equation} $$

Therefore, due to $\eqref{eq3}$ and $\eqref{eq4}$, the following equation:

$$ \left| l \right| =\frac{ L}{ m }=\left| \mathbf{r} \times \mathbf{v} \right| $$

holds true. Thus, $l$ can be interpreted as the angular momentum per unit mass of the particle. The fact that $l$ is constant indicates that the angular momentum of a particle moving under a central force is conserved, which is a known result. To derive the equation of the particle’s trajectory in space, which is independent of time, let’s introduce a new variable as below.

$$ u=\frac{1}{r} $$

Then, by $\eqref{eq3}$, $\dot{\theta}=lu^{2}$ holds. Now, calculating $\dot{r}$ and $\ddot{r}$ results in:

$$ \begin{align*} \dot{r} &= \frac{ d }{ d t}\left( \frac{1}{u} \right) \\ &= \dfrac{d}{du}\left(\frac{1}{u} \right) \frac{ d u}{ dt } = -\frac{ 1 }{ u^{2} }\frac{ d u}{ d t } \\ &= -\frac{ 1}{ u^{2} }\frac{ d u}{ d \theta }\frac{ d \theta}{ d t } =-\frac{1}{u^{2}}\dot{\theta} \frac{ d u}{ d\theta } \\ &= -l\frac{ d u}{ d\theta } \end{align*} $$

$$ \begin{align*} \ddot{r} &= -l\frac{ d }{ dt }\left( \frac{ d u}{ d \theta } \right) \\ &= -l \frac{ d }{ d\theta }\left( \frac{ d u}{ d\theta } \right)\frac{ d \theta}{ d t } \\ &= -l\dot{\theta} \frac{ d ^{2}u }{ d \theta^{2} } \\ &= -l^{2}u^{2}\frac{ d ^{2}u}{ d \theta^{2} } \end{align*} $$

Substituting these into $\eqref{eq2}$ yields the following equation.

$$ \begin{align*} && -ml^{2}u^{2}\frac{ d ^{2} u}{ d \theta^{2} }-ml^{2}u^{3}&=F({\textstyle \frac{1}{u}}) \\ \implies && \frac{ d^{2} u}{ d \theta^{2}}+u&=-\frac{1}{ml^{2}u^{2}}F({\textstyle \frac{1}{u}}) \end{align*} $$

Here, if the force $F$ is proportional to the inverse square of the distance, similar to gravity, the orbit becomes an ellipse. This application to the motion of planets is known as Kepler’s First Law.


  1. Grant R. Fowles and George L. Cassiday, Analytical Mechanics (7th Edition, 2005), p229-231 ↩︎