Derivation of F-distribution from Two Independent Chi-squared Distributions📂Probability Distribution
Derivation of F-distribution from Two Independent Chi-squared Distributions
Theorem
If two random variablesU,V are independent and it is assumed that U∼χ2(r1), V∼χ2(r2) then
V/r2U/r1∼F(r1,r2)
Explanation
If two data follow the Chi-squared distribution and are independent, it might be possible to explain their ratio using distribution theory. In statistics in general, it is assumed that the squared standardized residuals follow the Chi-squared distribution, which is why the F-test is commonly used. While the proof itself is not crucial, understanding why the F-test is used in many analyses provides vital insight, making it an essential fact for students of mathematical statistics.
Strategy: Direct deduction using the joint density function of Chi-squared distributions.
Definition of Chi-squared distribution: A continuous probability distribution for a given degree of freedom r>0 that has the following probability density function χ2(r) is called the Chi-squared distribution.
f(x)=Γ(r/2)2r/21xr/2−1e−x/2,x∈(0,∞)
Definition of F-distribution: A continuous probability distribution for a given degree of freedom r1,r2>0 that has the following probability density function F(r1,r2) is called the F-distribution.
f(x)=B(r1/2,r2/2)1(r2r1)r1/2xr1/2−1(1+r2r1x)−(r1+r2)/2,x∈(0,∞)
Since U,V are independent, the joint density function with respect to u,v∈(0,∞) is as follows.
h(u,v)=Γ(2r1)Γ(2r2)2(r1+r2)/21ur1/2−1vr2/2−1e−(u+v)/2
Now, if we set W:=V/r2U/r1 and Z:=V, then u=(r1/r2)zw and v=z, thus
∣J∣=(r1/r2)z0(r1/r2)w1=(r1/r2)z=0
Therefore, the joint density function of W,Z with respect to w,z∈(0,∞) is
g(w,z)=Γ(2r1)Γ(2r2)2(r1+r2)/21(r2r1zw)2r1−2z2r2−2exp[−2z(r2r1w+1)]r2r1z
The marginal density function g1 of W is set to y:=2z(r2r1w+1), thus
g1(w)=====∫−∞∞g(w,z)dz∫−∞∞Γ(2r1)Γ(2r2)2(r1+r2)/21(r2r1zw)2r1−2z2r2−2exp[−2z(r2r1w+1)]r2r1zdz∫−∞∞Γ(2r1)Γ(2r2)2(r1+r2)/2(r1/r2)r1/2wr1/2−1(r2r1w+12y)2r1+r2−1e−y(r2r1w+12)dyΓ(2r1)Γ(2r2)Γ(2r1+r2)(r2r1)r1/2(1+r2r1w)(r1+r2)/2wr1/2−1B(r1/2,r2/2)1(r2r1)r1/2wr1/2−1(1+r2r1w)−(r1+r2)/2
Therefore
W∼F(r1,r2)
■
Hogg et al. (2013). Introduction to Mathematical Statistcs(7th Edition): 193-194. ↩︎