logo

Translation, Modulation, and Dilation Commutation Relations in L2 Spaces 📂Lebesgue Spaces

Translation, Modulation, and Dilation Commutation Relations in L2 Spaces

Theorem1

For all a,bRa, b \in \mathbb{R} and c>0c > 0, Ta,Eb,DcT_{a}, E_{b}, D_{c} has the following relationship:

(TaEbf)(x)=e2πiba(EbTaf)(x) \begin{equation} (T_{a} E_{b} f ) (x) = e^{- 2 \pi i b a} (E_{b} T_{a} f ) (x) \end{equation}

(TaDcf)(x)=(DcTa/cf)(x) \begin{equation} (T_{a} D_{c} f ) (x) = (D_{c} T_{a/c} f ) (x) \end{equation}

(DcEbf)(x)=(Eb/cDcf)(x) \begin{equation} (D_{c} E_{b} f ) (x) = (E_{b/c} D_{c} f ) (x) \end{equation}

Here, Ta,Eb,DcT_{a}, E_{b}, D_{c} is defined from L2L^{2} as translation, modulation, dilation.

Proof

(1)

(TaEbf)(x)=Ta(e2πibxf(x))=e2πib(xa)f(xa)=e2πib(a)e2πibxf(xa)=e2πiba(EbTaf)(x) \begin{align*} (T_{a} E_{b} f ) (x) =& T_{a} \left( e^{2 \pi i b x} f(x) \right) \\ =& e^{2 \pi i b (x-a)} f(x-a) \\ =& e^{2 \pi i b (-a)} e^{2 \pi i b x} f(x-a) \\ =& e^{- 2 \pi i b a} (E_{b} T_{a} f ) (x) \end{align*}

(2)

(TaEbf)(x)=Ta(e2πibxf(x))=e2πib(xa)f(xa)=e2πib(a)e2πibxf(xa)=e2πiba(EbTaf)(x) \begin{align*} (T_{a} E_{b} f ) (x) =& T_{a} \left( e^{2 \pi i b x} f(x) \right) \\ =& e^{2 \pi i b (x-a)} f(x-a) \\ =& e^{2 \pi i b (-a)} e^{2 \pi i b x} f(x-a) \\ =& e^{- 2 \pi i b a} (E_{b} T_{a} f ) (x) \end{align*}

(3)

(TaEbf)(x)=Ta(e2πibxf(x))=e2πib(xa)f(xa)=e2πib(a)e2πibxf(xa)=e2πiba(EbTaf)(x) \begin{align*} (T_{a} E_{b} f ) (x) =& T_{a} \left( e^{2 \pi i b x} f(x) \right) \\ =& e^{2 \pi i b (x-a)} f(x-a) \\ =& e^{2 \pi i b (-a)} e^{2 \pi i b x} f(x-a) \\ =& e^{- 2 \pi i b a} (E_{b} T_{a} f ) (x) \end{align*}


  1. Ole Christensen, Functions, Spaces, and Expansions: Mathematical Tools in Physics and Engineering (2010), p123 ↩︎