Translation, Modulation, and Dilation Commutation Relations in L2 Spaces
📂Lebesgue SpacesTranslation, Modulation, and Dilation Commutation Relations in L2 Spaces
Theorem
For all a,b∈R and c>0, Ta,Eb,Dc has the following relationship:
(TaEbf)(x)=e−2πiba(EbTaf)(x)
(TaDcf)(x)=(DcTa/cf)(x)
(DcEbf)(x)=(Eb/cDcf)(x)
Here, Ta,Eb,Dc is defined from L2 as translation, modulation, dilation.
Proof
(1)
(TaEbf)(x)====Ta(e2πibxf(x))e2πib(x−a)f(x−a)e2πib(−a)e2πibxf(x−a)e−2πiba(EbTaf)(x)
■
(2)
(TaEbf)(x)====Ta(e2πibxf(x))e2πib(x−a)f(x−a)e2πib(−a)e2πibxf(x−a)e−2πiba(EbTaf)(x)
■
(3)
(TaEbf)(x)====Ta(e2πibxf(x))e2πib(x−a)f(x−a)e2πib(−a)e2πibxf(x−a)e−2πiba(EbTaf)(x)
■