Orthogonality of Bessel Functions
📂Functions Orthogonality of Bessel Functions Theorem Let’s assume that the roots of the first kind Bessel function α , β \alpha, \beta α , β are J ν ( x ) J_{\nu}(x) J ν ( x ) . Then, in the interval [ 0 , 1 ] [0,1] [ 0 , 1 ] , x J ν ( x ) \sqrt{x}J_{\nu}(x) x J ν ( x ) forms an orthogonal set .
∫ 0 1 x J ν ( α x ) J ν ( β x ) d x = { 0 α ≠ β 1 2 J ν + 1 2 ( α ) = 1 2 J ν − 1 2 ( α ) = 1 2 J ν ′ 2 ( α ) α = β
\int_{0}^{1} x J_{\nu}(\alpha x) J_{\nu}(\beta x)dx
= \begin{cases} 0 &\alpha\ne \beta \\
\frac{1}{2}J^{2}_{\nu+1}(\alpha)=\frac{1}{2}J_{\nu-1}^{2}(\alpha)=\frac{1}{2}J_{\nu^{\prime}}^{2}(\alpha) &\alpha=\beta
\end{cases}
∫ 0 1 x J ν ( αx ) J ν ( β x ) d x = { 0 2 1 J ν + 1 2 ( α ) = 2 1 J ν − 1 2 ( α ) = 2 1 J ν ′ 2 ( α ) α = β α = β
Description The above content can also be expressed as ‘Bessel function J ν ( x ) J_{\nu}(x) J ν ( x ) is orthogonal in the interval [ 0 , 1 ] [0,1] [ 0 , 1 ] with respect to the weight function x x x ’.
Proof α ≠ β \alpha \ne \beta α = β The differential equation that satisfies J ν ( α x ) J_{\nu}(\alpha x) J ν ( αx ) , J ν ( β x ) J_{\nu}(\beta x) J ν ( β x ) is as follows.
x ( x y ′ ) ′ + ( α 2 x 2 − ν 2 ) y = 0 x ( x y ′ ) ′ + ( β 2 x 2 − ν 2 ) y = 0
\begin{align*}
x(xy^{\prime})^{\prime}+(\alpha^{2}x^{2}-\nu^{2})y &= 0 \\
x(xy^{\prime})^{\prime}+(\beta ^{2}x^{2}-\nu^{2})y &= 0
\end{align*}
x ( x y ′ ) ′ + ( α 2 x 2 − ν 2 ) y x ( x y ′ ) ′ + ( β 2 x 2 − ν 2 ) y = 0 = 0
Here, let’s substitute J ν ( α x ) = u J_{\nu}(\alpha x)=u J ν ( αx ) = u for J ν ( β x ) = v J_{\nu}(\beta x)=v J ν ( β x ) = v
x ( x u ′ ) ′ + ( α 2 x 2 − ν 2 ) u = 0 x ( x v ′ ) ′ + ( β 2 x 2 − ν 2 ) v = 0
\begin{align}
x(xu^{\prime})^{\prime}+(\alpha^{2}x^{2}-\nu^{2})u &= 0 \\
x(xv^{\prime})^{\prime}+(\beta ^{2}x^{2}-\nu^{2})v &= 0
\end{align}
x ( x u ′ ) ′ + ( α 2 x 2 − ν 2 ) u x ( x v ′ ) ′ + ( β 2 x 2 − ν 2 ) v = 0 = 0
Now, calculating v ⋅ ( 1 ) − u ⋅ ( 2 ) v \cdot (1)-u \cdot (2) v ⋅ ( 1 ) − u ⋅ ( 2 ) gives us
v x ( x u ′ ) ′ − u x ( x v ′ ) ′ + ( α 2 − β 2 ) x 2 u v = 0 ⟹ v ( x u ′ ) ′ − u ( x v ′ ) ′ + ( α 2 − β 2 ) x u v = 0 ⟹ ( v x u ′ − u x v ′ ) ′ + ( α 2 − β 2 ) x u v = 0
\begin{align*}
&& vx(xu^{\prime})^{\prime}-ux(xv^{\prime})^{\prime}+(\alpha^{2}-\beta^{2})x^{2}uv = 0 \\
\implies && v(xu^{\prime})^{\prime}-u(xv^{\prime})^{\prime}+(\alpha^{2}-\beta^{2})xuv = 0 \\
\implies && (vxu^{\prime}-uxv^{\prime})^{\prime}+(\alpha^{2}-\beta^{2})xuv = 0
\end{align*}
⟹ ⟹ vx ( x u ′ ) ′ − ux ( x v ′ ) ′ + ( α 2 − β 2 ) x 2 uv = 0 v ( x u ′ ) ′ − u ( x v ′ ) ′ + ( α 2 − β 2 ) xuv = 0 ( vx u ′ − ux v ′ ) ′ + ( α 2 − β 2 ) xuv = 0
Integrating both sides over the interval [ 0 , 1 ] [0,1] [ 0 , 1 ] gives
[ v x u ′ − u x v ′ ] 0 1 + ( α 2 − β 2 ) ∫ 0 1 x u v d x = 0 (3)
[vxu^{\prime}-uxv^{\prime}]_{0}^{1}+ (\alpha^{2} -\beta^{2})\int_{0}^{1}xuvdx = 0 \tag{3}
[ vx u ′ − ux v ′ ] 0 1 + ( α 2 − β 2 ) ∫ 0 1 xuv d x = 0 ( 3 )
Since u ( 1 ) = J ν ( α ) = 0 = J ν ( β ) = v ( 1 ) u(1)=J_{\nu}(\alpha)=0=J_{\nu}(\beta)=v(1) u ( 1 ) = J ν ( α ) = 0 = J ν ( β ) = v ( 1 ) , the first term is 0 0 0 . Therefore,
( α 2 − β 2 ) ∫ 0 1 x u v d x = 0
(\alpha^{2} -\beta^{2})\int_{0}^{1}xuvdx = 0
( α 2 − β 2 ) ∫ 0 1 xuv d x = 0
But since ( α 2 − β 2 ) ≠ 0 (\alpha^{2}-\beta ^{2}) \ne 0 ( α 2 − β 2 ) = 0 ,
∫ 0 1 x u v d x = ∫ 0 1 x J ν ( α x ) J ν ( β x ) = 0
\int_{0}^{1}xuvdx=\int_{0}^{1}xJ_{\nu}(\alpha x)J_{\nu}(\beta x)=0
∫ 0 1 xuv d x = ∫ 0 1 x J ν ( αx ) J ν ( β x ) = 0
■
α = β \alpha = \beta α = β Now, let’s assume that α \alpha α is the root of J ν ( x ) J_{\nu}(x) J ν ( x ) but β \beta β is not. From the proof above, ( 3 ) (3) ( 3 ) can be derived regardless of whether α \alpha α , β \beta β are roots of J ν ( x ) J_{\nu}(x) J ν ( x ) , so let’s start with ( 3 ) (3) ( 3 ) . To summarize,
[ v ( 1 ) u ′ ( 1 ) − u ( 1 ) v ′ ( 1 ) ] + ( α 2 − β 2 ) ∫ 0 1 x u v d x = 0 ⟹ [ J ν ( β ) α J ν ′ ( α ) − J ν ( α ) β J ν ′ ( β ) ] + ( α 2 − β 2 ) ∫ 0 1 x u v d x = 0 ⟹ J ν ( β ) α J ν ′ ( α ) + ( α 2 − β 2 ) ∫ 0 1 x u v d x = 0 ⟹ ∫ 0 1 x J ν ( α x ) J ν ( β x ) d x = J ν ( β ) α J ν ′ ( α ) β 2 − α 2
\begin{align*}
&& [v(1)u^{\prime}(1)-u(1)v^{\prime}(1)]+(\alpha^{2} -\beta^{2})\int_{0}^{1}xuv dx &=0 \\
\implies && [J_{\nu}(\beta) \alpha J_{\nu}^{\prime}(\alpha)-J_{\nu}(\alpha)\beta J_{\nu}^{\prime}(\beta)]+(\alpha^{2} -\beta^{2})\int_{0}^{1}xuv dx &= 0 \\
\implies && J_{\nu}(\beta) \alpha J_{\nu}^{\prime}(\alpha)+(\alpha^{2} -\beta^{2})\int_{0}^{1}xuv dx &=0 \\
\implies && \int_{0}^{1}xJ_{\nu}(\alpha x)J_{\nu}(\beta x) dx &= \frac{J_{\nu}(\beta)\alpha J_{\nu}^{\prime}(\alpha )}{\beta^{2}- \alpha^{2}}
\end{align*}
⟹ ⟹ ⟹ [ v ( 1 ) u ′ ( 1 ) − u ( 1 ) v ′ ( 1 )] + ( α 2 − β 2 ) ∫ 0 1 xuv d x [ J ν ( β ) α J ν ′ ( α ) − J ν ( α ) β J ν ′ ( β )] + ( α 2 − β 2 ) ∫ 0 1 xuv d x J ν ( β ) α J ν ′ ( α ) + ( α 2 − β 2 ) ∫ 0 1 xuv d x ∫ 0 1 x J ν ( αx ) J ν ( β x ) d x = 0 = 0 = 0 = β 2 − α 2 J ν ( β ) α J ν ′ ( α )
Taking the limit of β → α \beta \rightarrow \alpha β → α on both sides gives
lim β → α ∫ 0 1 x J ν ( α x ) J ν ( β x ) d x = lim β → α J ν ( β ) α J ν ′ ( α ) β 2 − α 2 = 0 0
\lim \limits_{\beta \rightarrow \alpha} \int_{0}^{1}xJ_{\nu}(\alpha x)J_{\nu}(\beta x) dx =\lim \limits_{\beta \rightarrow \alpha} \frac{J_{\nu}(\beta)\alpha J_{\nu}^{\prime}(\alpha )}{\beta^{2}- \alpha^{2}}=\frac{ 0 }{ 0 }
β → α lim ∫ 0 1 x J ν ( αx ) J ν ( β x ) d x = β → α lim β 2 − α 2 J ν ( β ) α J ν ′ ( α ) = 0 0
Therefore, let’s calculate using L’Hospital’s Rule. Differentiating the right side with β \beta β gives
lim β → α ∫ 0 1 x J ν ( α x ) J ν ( β x ) d x = lim β → α J ν ( β ) α J ν ′ ( α ) β 2 − α 2 = lim β → α J ν ′ ( β ) α J ν ′ ( α ) 2 β = J ν ′ ( α ) α J ν ′ ( α ) 2 α = 1 2 J ν ′ ( α )
\begin{align*}
\lim \limits_{\beta \rightarrow \alpha} \int_{0}^{1}xJ_{\nu}(\alpha x)J_{\nu}(\beta x) dx
&= \lim \limits_{\beta \rightarrow \alpha} \frac{J_{\nu}(\beta)\alpha J_{\nu}^{\prime}(\alpha )}{\beta^{2}- \alpha^{2}} \\
&= \lim \limits_{\beta \rightarrow \alpha} \frac{J_{\nu}^{\prime}(\beta)\alpha J_{\nu}^{\prime}(\alpha )}{2\beta} \\
&= \frac{J_{\nu}^{\prime}(\alpha)\alpha J_{\nu}^{\prime}(\alpha )}{2\alpha} \\
&= \frac{1}{2}J_{\nu}^{\prime}(\alpha)
\end{align*}
β → α lim ∫ 0 1 x J ν ( αx ) J ν ( β x ) d x = β → α lim β 2 − α 2 J ν ( β ) α J ν ′ ( α ) = β → α lim 2 β J ν ′ ( β ) α J ν ′ ( α ) = 2 α J ν ′ ( α ) α J ν ′ ( α ) = 2 1 J ν ′ ( α )
And by the recursive relationship of Bessel’s function ( e ) (e) ( e ) ,
1 2 J ν ′ ( α ) = 1 2 J ν − 1 ( α ) = 1 2 J ν + 1 ( α )
\frac{1}{2}J_{\nu}^{\prime}(\alpha) =\frac{1}{2}J_{\nu-1}(\alpha) =\frac{1}{2}J_{\nu+1}(\alpha)
2 1 J ν ′ ( α ) = 2 1 J ν − 1 ( α ) = 2 1 J ν + 1 ( α )
Therefore,
∫ 0 1 x J ν 2 ( α x ) d x = 1 2 J ν + 1 2 ( α ) = 1 2 J ν − 1 2 ( α ) = 1 2 J ν ′ 2 ( α )
\int_{0}^{1}xJ_{\nu}^{2}(\alpha x)dx=\frac{1}{2}J^{2}_{\nu+1}(\alpha)=\frac{1}{2}J_{\nu-1}^{2}(\alpha)=\frac{1}{2}J_{\nu^{\prime}}^{2}(\alpha)
∫ 0 1 x J ν 2 ( αx ) d x = 2 1 J ν + 1 2 ( α ) = 2 1 J ν − 1 2 ( α ) = 2 1 J ν ′ 2 ( α )
■