logo

Orthogonality of Bessel Functions 📂Functions

Orthogonality of Bessel Functions

Theorem

Let’s assume that the roots of the first kind Bessel function α,β\alpha, \beta are Jν(x)J_{\nu}(x). Then, in the interval [0,1][0,1], xJν(x)\sqrt{x}J_{\nu}(x) forms an orthogonal set.

01xJν(αx)Jν(βx)dx={0αβ12Jν+12(α)=12Jν12(α)=12Jν2(α)α=β \int_{0}^{1} x J_{\nu}(\alpha x) J_{\nu}(\beta x)dx = \begin{cases} 0 &\alpha\ne \beta \\ \frac{1}{2}J^{2}_{\nu+1}(\alpha)=\frac{1}{2}J_{\nu-1}^{2}(\alpha)=\frac{1}{2}J_{\nu^{\prime}}^{2}(\alpha) &\alpha=\beta \end{cases}

Description

The above content can also be expressed as ‘Bessel function Jν(x)J_{\nu}(x) is orthogonal in the interval [0,1][0,1] with respect to the weight function xx’.

Proof

αβ\alpha \ne \beta

The differential equation that satisfies Jν(αx)J_{\nu}(\alpha x), Jν(βx)J_{\nu}(\beta x) is as follows.

x(xy)+(α2x2ν2)y=0x(xy)+(β2x2ν2)y=0 \begin{align*} x(xy^{\prime})^{\prime}+(\alpha^{2}x^{2}-\nu^{2})y &= 0 \\ x(xy^{\prime})^{\prime}+(\beta ^{2}x^{2}-\nu^{2})y &= 0 \end{align*}

Here, let’s substitute Jν(αx)=uJ_{\nu}(\alpha x)=u for Jν(βx)=vJ_{\nu}(\beta x)=v

x(xu)+(α2x2ν2)u=0x(xv)+(β2x2ν2)v=0 \begin{align} x(xu^{\prime})^{\prime}+(\alpha^{2}x^{2}-\nu^{2})u &= 0 \\ x(xv^{\prime})^{\prime}+(\beta ^{2}x^{2}-\nu^{2})v &= 0 \end{align}

Now, calculating v(1)u(2)v \cdot (1)-u \cdot (2) gives us

vx(xu)ux(xv)+(α2β2)x2uv=0    v(xu)u(xv)+(α2β2)xuv=0    (vxuuxv)+(α2β2)xuv=0 \begin{align*} && vx(xu^{\prime})^{\prime}-ux(xv^{\prime})^{\prime}+(\alpha^{2}-\beta^{2})x^{2}uv = 0 \\ \implies && v(xu^{\prime})^{\prime}-u(xv^{\prime})^{\prime}+(\alpha^{2}-\beta^{2})xuv = 0 \\ \implies && (vxu^{\prime}-uxv^{\prime})^{\prime}+(\alpha^{2}-\beta^{2})xuv = 0 \end{align*}

Integrating both sides over the interval [0,1][0,1] gives

[vxuuxv]01+(α2β2)01xuvdx=0(3) [vxu^{\prime}-uxv^{\prime}]_{0}^{1}+ (\alpha^{2} -\beta^{2})\int_{0}^{1}xuvdx = 0 \tag{3}

Since u(1)=Jν(α)=0=Jν(β)=v(1)u(1)=J_{\nu}(\alpha)=0=J_{\nu}(\beta)=v(1), the first term is 00. Therefore,

(α2β2)01xuvdx=0 (\alpha^{2} -\beta^{2})\int_{0}^{1}xuvdx = 0

But since (α2β2)0(\alpha^{2}-\beta ^{2}) \ne 0,

01xuvdx=01xJν(αx)Jν(βx)=0 \int_{0}^{1}xuvdx=\int_{0}^{1}xJ_{\nu}(\alpha x)J_{\nu}(\beta x)=0

α=β\alpha = \beta

Now, let’s assume that α\alpha is the root of Jν(x)J_{\nu}(x) but β\beta is not. From the proof above, (3)(3) can be derived regardless of whether α\alpha, β\beta are roots of Jν(x)J_{\nu}(x), so let’s start with (3)(3). To summarize,

[v(1)u(1)u(1)v(1)]+(α2β2)01xuvdx=0    [Jν(β)αJν(α)Jν(α)βJν(β)]+(α2β2)01xuvdx=0    Jν(β)αJν(α)+(α2β2)01xuvdx=0    01xJν(αx)Jν(βx)dx=Jν(β)αJν(α)β2α2 \begin{align*} && [v(1)u^{\prime}(1)-u(1)v^{\prime}(1)]+(\alpha^{2} -\beta^{2})\int_{0}^{1}xuv dx &=0 \\ \implies && [J_{\nu}(\beta) \alpha J_{\nu}^{\prime}(\alpha)-J_{\nu}(\alpha)\beta J_{\nu}^{\prime}(\beta)]+(\alpha^{2} -\beta^{2})\int_{0}^{1}xuv dx &= 0 \\ \implies && J_{\nu}(\beta) \alpha J_{\nu}^{\prime}(\alpha)+(\alpha^{2} -\beta^{2})\int_{0}^{1}xuv dx &=0 \\ \implies && \int_{0}^{1}xJ_{\nu}(\alpha x)J_{\nu}(\beta x) dx &= \frac{J_{\nu}(\beta)\alpha J_{\nu}^{\prime}(\alpha )}{\beta^{2}- \alpha^{2}} \end{align*}

Taking the limit of βα\beta \rightarrow \alpha on both sides gives

limβα01xJν(αx)Jν(βx)dx=limβαJν(β)αJν(α)β2α2=00 \lim \limits_{\beta \rightarrow \alpha} \int_{0}^{1}xJ_{\nu}(\alpha x)J_{\nu}(\beta x) dx =\lim \limits_{\beta \rightarrow \alpha} \frac{J_{\nu}(\beta)\alpha J_{\nu}^{\prime}(\alpha )}{\beta^{2}- \alpha^{2}}=\frac{ 0 }{ 0 }

Therefore, let’s calculate using L’Hospital’s Rule. Differentiating the right side with β\beta gives

limβα01xJν(αx)Jν(βx)dx=limβαJν(β)αJν(α)β2α2=limβαJν(β)αJν(α)2β=Jν(α)αJν(α)2α=12Jν(α) \begin{align*} \lim \limits_{\beta \rightarrow \alpha} \int_{0}^{1}xJ_{\nu}(\alpha x)J_{\nu}(\beta x) dx &= \lim \limits_{\beta \rightarrow \alpha} \frac{J_{\nu}(\beta)\alpha J_{\nu}^{\prime}(\alpha )}{\beta^{2}- \alpha^{2}} \\ &= \lim \limits_{\beta \rightarrow \alpha} \frac{J_{\nu}^{\prime}(\beta)\alpha J_{\nu}^{\prime}(\alpha )}{2\beta} \\ &= \frac{J_{\nu}^{\prime}(\alpha)\alpha J_{\nu}^{\prime}(\alpha )}{2\alpha} \\ &= \frac{1}{2}J_{\nu}^{\prime}(\alpha) \end{align*}

And by the recursive relationship of Bessel’s function (e)(e),

12Jν(α)=12Jν1(α)=12Jν+1(α) \frac{1}{2}J_{\nu}^{\prime}(\alpha) =\frac{1}{2}J_{\nu-1}(\alpha) =\frac{1}{2}J_{\nu+1}(\alpha)

Therefore,

01xJν2(αx)dx=12Jν+12(α)=12Jν12(α)=12Jν2(α) \int_{0}^{1}xJ_{\nu}^{2}(\alpha x)dx=\frac{1}{2}J^{2}_{\nu+1}(\alpha)=\frac{1}{2}J_{\nu-1}^{2}(\alpha)=\frac{1}{2}J_{\nu^{\prime}}^{2}(\alpha)