logo

Generalized Dirichlet Product 📂Number Theory

Generalized Dirichlet Product

Definition 1

Let F:R+CF : \mathbb{R}^{+} \to \mathbb{C} be a function where x(0,1)x \in (0,1), and let F(x)=0F(x) = 0 apply. For any arithmetic function α\alpha, the following operation \circ is defined as the generalized Dirichlet product. (αF)(x):=nxα(n)F(xn) (\alpha \circ F)(x) := \sum_{n \le x} \alpha (n) F \left( {{ x } \over { n }} \right)

Basic Properties

Let α\alpha and β\beta be arithmetic functions, and let F,G:R+CF , G : \mathbb{R}^{+} \to \mathbb{C} be a function where its function value is 00 in x(0,1)x \in (0,1).

  • [1]: α(βF)=(α β)F\alpha \circ \left( \beta \circ F \right) = \left( \alpha \ast\ \beta \right) \circ F
  • [2] Left unit element: (IF)=F(I \circ F) = F
  • [3] Generalized inverse formula: If α\alpha has an inverse α1\alpha^{-1}, then G(x)=nxα(n)F(xn)    F(x)=nxα1(n)G(xn) G(x) = \sum_{n \le x} \alpha (n) F \left( {{ x } \over { n }} \right) \iff F(x) = \sum_{n \le x} \alpha^{-1} (n) G \left( {{ x } \over { n }} \right)
  • [4] Generalized Möbius inverse formula: If α\alpha is completely multiplicative, then G(x)=nxα(n)F(xn)    F(x)=nxμ(n)α(n)G(xn) G(x) = \sum_{n \le x} \alpha (n) F \left( {{ x } \over { n }} \right) \iff F(x) = \sum_{n \le x} \mu (n) \alpha (n) G \left( {{ x } \over { n }} \right)

Explanation

The generalized Dirichlet product commonly appears throughout analytic number theory. The difference from the original convolution is that one of the two functions does not have to be an arithmetic function and that the index of \sum has been changed from dnd \mid n to nxn \le x. If FF is an arithmetic function where F(x)=0F(x) = 0 for all places where xNx \notin \mathbb{N} applies, then \circ precisely becomes \ast. In other words, for all mNm \in \mathbb{N} (αF)(m)=(α F)(m) (\alpha \circ F) (m) = (\alpha \ast\ F)(m) hence, calling \circ a generalization of \ast. Such operation \circ may generally not follow the associative or commutative law. From the definition alone, there is a constraint that the left side of the operator must be an arithmetic function, which is why theorem [2] specifically mentions the property of being a left unit element.

Theorem [4] is a generalization of Möbius’s inverse formula, noting that it involves the extended functions FF and GG instead of the arithmetic function α\alpha.

[1]

For x>0x > 0, [α(βF)](x)=nxα(n)mx/nβ(m)F(xmn)=mnxα(n)β(m)F(xmn)=kx[nkα(n)β(kn)]F(xk)=kx(α β)(k)F(xk)=[(α β)F](x) \begin{align*} \left[ \alpha \circ \left( \beta \circ F \right) \right] (x) =& \sum_{n \le x} \alpha (n) \sum_{m \le x/n} \beta (m) F \left( {{ x } \over { mn }} \right) \\ =& \sum_{mn \le x} \alpha (n) \beta (m) F \left( {{ x } \over { mn }} \right) \\ =& \sum_{k \le x} \left[ \sum_{n \mid k } \alpha (n) \beta \left( {{ k } \over { n }} \right) \right] F \left( {{ x } \over { k }} \right) \\ =& \sum_{k \le x} ( \alpha \ast\ \beta ) (k) F \left( {{ x } \over { k }} \right) \\ =& \left[ ( \alpha \ast\ \beta ) \circ F \right] (x) \end{align*}

[2]

The identity II, for all mNm \in \mathbb{N}, (IF)(x)=nx[1n]F(xn)=F(x) (I \circ F)(x) = \sum_{n \le x} \left[ {{ 1 } \over { n }} \right] F \left( {{ x } \over { n }} \right) = F(x)

[3]

If G=αFG = \alpha \circ F, then by Theorem [1] and Theorem [2], α1G=α1(αF)=(α1 α)F=IF=F \alpha^{-1} \circ G = \alpha^{-1} \circ \left( \alpha \circ F \right) = \left( \alpha^{-1} \ast\ \alpha \right) \circ F = I \circ F = F The proof in the reverse direction is similar.

[4]

If a property of completely multiplicative functions ff is multiplicative, then being a completely multiplicative function ff is equivalent to the inverse of the Dirichlet product of ff f1f^{-1} being as follows. f1(n)=μ(n)f(n) f^{-1} (n) = \mu (n) f (n)

Since α\alpha is assumed to be completely multiplicative, applying Theorem [3] to α1(n)=μ(n)α(n)\alpha^{-1} (n) = \mu (n) \alpha (n) gives the result.

See Also


  1. Apostol. (1976). Introduction to Analytic Number Theory: p39. ↩︎