logo

Gabi's Proof of Li 📂Lemmas

Gabi's Proof of Li

Theorem

If $bdf(b+d)\neq 0$ then $$ \frac { a }{ b }=\frac { c }{ d }=\frac { e }{ f } \implies \frac { a+c }{ b+d }=\frac { e }{ f } $$

Description

“Gabi” is nothing else but a word made from two Hanja characters: add 加 and compare 比. Here, the compare 比 is the same as the ‘ratio’ in ratios, making it a theorem where everything is encapsulated in the name.

Proof

$$ \frac { a }{ b }=\frac { c }{ d }=\frac { e }{ f } $$

Therefore, $\frac { a }{ b }=\frac { e }{ f }$ and $\frac { c }{ d }=\frac { e }{ f }$. If we multiply both sides of $\frac { a }{ b }=\frac { e }{ f }$ by $bf$,

$$ \frac { c }{ d }=\frac { e }{ f } $$

and, if we multiply both sides of $\frac { c }{ d }=\frac { e }{ f }$ by $df$,

$$ cf=de $$

Adding up the two obtained equations on both sides gives us

$$ (a+c)f=(b+d)e $$

Dividing both sides by $(b+d)f$ results in

$$ \frac { a+c }{ b+d }=\frac { e }{ f } $$