logo

Hilbert Space Frames 📂Hilbert Space

Hilbert Space Frames

Definition1

A sequence {vk}kN\left\{ \mathbf{v}_{k} \right\}_{k \in \mathbb{N}} in a Hilbert space HH is called a frame if there exists a A,B>0A,B > 0 satisfying the following, and especially when A=BA = B, this frame is said to be tight.

Av2kNv,vk2Bv2,vH A \left\| \mathbf{v} \right\|^{2} \le \sum_{k \in \mathbb{N}} \left| \left\langle \mathbf{v} , \mathbf{v}_{k} \right\rangle \right|^{2} \le B \left\| \mathbf{v} \right\|^{2} \qquad , \forall \mathbf{v} \in H

Explanation

Unlike Bessel sequences, frames have an existing AA that bounds v\mathbf{v} from above and below. In particular, if {vk}kN\left\{ \mathbf{v}_{k} \right\}_{k \in \mathbb{N}} is a normal orthogonal basis of HH, then it is equivalent to being a tight frame with A=B=1A=B=1.

Equivalence conditions of normal orthogonal basis: Let us say HH is a Hilbert space. The following are all equivalent regarding the normal orthogonal system {ek}kNH\left\{ \mathbf{e}_{k} \right\}_{k \in \mathbb{N}} \subset H of HH.

  • (i): {ek}kNH\left\{ \mathbf{e}_{k} \right\}_{k \in \mathbb{N}} \subset H is a normal orthogonal basis of HH.
  • (iv): For all xH\mathbf{x}\in H, kNx,ek2=x2 \sum_{k \in \mathbb{N}} \left| \langle \mathbf{x}, \mathbf{e}_{k} \rangle \right|^{2} = \left\| \mathbf{x}\right\|^{2}

  1. Ole Christensen, Functions, Spaces, and Expansions: Mathematical Tools in Physics and Engineering (2010), p84-85 ↩︎