logo

Gram-Schmidt Orthogonalization in Separable Hilbert Spaces 📂Hilbert Space

Gram-Schmidt Orthogonalization in Separable Hilbert Spaces

Theorem1

Every separable Hilbert space has an orthonormal basis.

Proof

Strategy: Essentially the same as Gram-Schmidt orthonormalization in finite-dimensional vector spaces. Since the existence of a basis is not guaranteed in general Hilbert spaces unlike finite-dimensional vector spaces, it is necessary to first choose an orthogonal basis {vk}kN\left\{ \mathbf{v}_{k} \right\}_{k \in \mathbb{N}} due to separability, before proceeding with orthonormalization.


span{vk}kN=H \overline{\text{span}} \left\{ \mathbf{v}_{k} \right\}_{k \in \mathbb{N}} = H

If Hilbert space HH is a separable space, then there exists {vk}kNH\left\{ \mathbf{v}_{k} \right\}_{k \in \mathbb{N}} \subset H satisfying the above. Let’s define {ek}k=1n\left\{ \mathbf{e}_{k} \right\}_{k=1}^{n} as follows.

e1:=v1v1e2:=v2v2,e1e1v2v2,e1e1en+1:=vn+1k=1nvn+1,ekekvn+1k=1nvn+1,ekek \begin{align*} \mathbf{e}_{1} :=& {{ \mathbf{v}_{1} } \over { \left\| \mathbf{v}_{1} \right\| }} \\ \mathbf{e}_{2} :=& {{ \mathbf{v}_{2} - \left\langle \mathbf{v}_{2} , \mathbf{e}_{1} \right\rangle \mathbf{e}_{1} } \over { \left\| \mathbf{v}_{2} - \left\langle \mathbf{v}_{2} , \mathbf{e}_{1} \right\rangle \mathbf{e}_{1} \right\| }} \\ \mathbf{e}_{n+1} :=& {{ \mathbf{v}_{n+1} - \sum_{k=1}^{n} \left\langle \mathbf{v}_{n+1} , \mathbf{e}_{k} \right\rangle \mathbf{e}_{k} } \over { \left\| \mathbf{v}_{n+1} - \sum_{k=1}^{n} \left\langle \mathbf{v}_{n+1} , \mathbf{e}_{k} \right\rangle \mathbf{e}_{k} \right\| }} \end{align*}

Since {vk}kN\left\{ \mathbf{v}_{k} \right\}_{k \in \mathbb{N}} is an orthogonal basis of HH, we have ei,ej=δij\left\langle \mathbf{e}_{i} , \mathbf{e}_{j} \right\rangle = \delta_{ij}, and for all nNn \in \mathbb{N}, the following holds.

span{vk}k=1n=span{ek}k=1n \text{span} \left\{ \mathbf{v}_{k} \right\}_{k = 1}^{n} = \text{span} \left\{ \mathbf{e}_{k} \right\}_{k =1}^{n}

Therefore

span{ek}k=1=span{vk}k=1=H \overline{\text{span}} \left\{ \mathbf{e}_{k} \right\}_{k = 1}^{\infty} = \overline{\text{span}} \left\{ \mathbf{v}_{k} \right\}_{k =1}^{\infty} = H

Equivalence conditions for an orthonormal basis: Suppose HH is a Hilbert space. For the orthonormal system {ek}kNH\left\{ \mathbf{e}_{k} \right\}_{k \in \mathbb{N}} \subset H of HH, the following are all equivalent.

  • (i): {ek}kNH\left\{ \mathbf{e}_{k} \right\}_{k \in \mathbb{N}} \subset H is an orthonormal basis of HH.
  • (v): span{ek}kN=H\overline{\text{span}} \left\{ \mathbf{e}_{k} \right\}_{k \in \mathbb{N}} = H

Since span{ek}kN=H\overline{\text{span}} \left\{ \mathbf{e}_{k} \right\}_{k \in \mathbb{N}} = H, {ek}kN\left\{ \mathbf{e}_{k} \right\}_{k \in \mathbb{N}} is a basis of HH, specifically, since ei,ej=δij\left\langle \mathbf{e}_{i} , \mathbf{e}_{j} \right\rangle = \delta_{ij}, it is an orthonormal basis.


  1. Ole Christensen, Functions, Spaces, and Expansions: Mathematical Tools in Physics and Engineering (2010), p82 ↩︎