Proof of the Generalized Bessel's Inequality in Hilbert Spaces
📂Hilbert Space Proof of the Generalized Bessel's Inequality in Hilbert Spaces Theorem If { v k } k ∈ N \left\{ \mathbf{v}_{k} \right\}_{k \in \mathbb{N}} { v k } k ∈ N is a regular orthogonal set in the Hilbert space H H H , the following holds.
(a) For all { c k } k ∈ N ∈ ℓ 2 \left\{ c_{k} \right\}_{k \in \mathbb{N}} \in \ell^{2} { c k } k ∈ N ∈ ℓ 2 , the infinite series ∑ k ∈ N c k v k \sum_{k \in \mathbb{N}} c_{k} \mathbf{v}_{k} ∑ k ∈ N c k v k converges.
(b) For all v ∈ H \mathbf{v} \in H v ∈ H ,
∑ k ∈ N ∣ ⟨ v , v k ⟩ ∣ 2 ≤ ∥ v ∥ 2
\sum_{k \in \mathbb{N}} \left| \left\langle \mathbf{v} , \mathbf{v}_{k} \right\rangle \right|^{2} \le \left\| \mathbf{v} \right\|^{2}
k ∈ N ∑ ∣ ⟨ v , v k ⟩ ∣ 2 ≤ ∥ v ∥ 2
Explanation A ℓ 2 \ell^{2} ℓ 2 space is a function space consisting of a set of complex sequences whose sum of squares converges. The Bessel inequality is important in Fourier analysis and can be generalized to any Hilbert space.
Proof (a) Let us take { c k } k ∈ N ∈ ℓ 2 \left\{ c_{k} \right\}_{k \in \mathbb{N}} \in \ell^{2} { c k } k ∈ N ∈ ℓ 2 . For all natural numbers n > m n > m n > m ,
∥ ∑ k = 1 n c k v k − ∑ k = 1 m c k v k ∥ 2 = ∥ ∑ k = m + 1 n c k v k ∥ 2 = ⟨ ∑ k = m + 1 n c k v k , ∑ l = m + 1 n c l v l ⟩ = ∑ k = m + 1 n ∑ l = m + 1 n c k c l ‾ ⟨ v k , v l ⟩
\begin{align*}
\left\| \sum_{k=1}^{n} c_{k} \mathbf{v}_{k} - \sum_{k=1}^{m} c_{k} \mathbf{v}_{k} \right\|^{2} =& \left\| \sum_{k=m+1}^{n} c_{k} \mathbf{v}_{k} \right\|^{2}
\\ =& \left\langle \sum_{k=m+1}^{n} c_{k} \mathbf{v}_{k} , \sum_{l=m+1}^{n} c_{l} \mathbf{v}_{l} \right\rangle
\\ =& \sum_{k = m+1}^{n} \sum_{l = m+1}^{n} c_{k} \overline{c_{l}} \left\langle \mathbf{v}_{k} , \mathbf{v}_{l} \right\rangle
\end{align*}
k = 1 ∑ n c k v k − k = 1 ∑ m c k v k 2 = = = k = m + 1 ∑ n c k v k 2 ⟨ k = m + 1 ∑ n c k v k , l = m + 1 ∑ n c l v l ⟩ k = m + 1 ∑ n l = m + 1 ∑ n c k c l ⟨ v k , v l ⟩
Due to the regular orthogonality of { v k } k ∈ N \left\{ \mathbf{v}_{k} \right\}_{k \in \mathbb{N}} { v k } k ∈ N ,
∥ ∑ k = 1 n c k v k − ∑ k = 1 m c k v k ∥ 2 = ∑ k = m + 1 n c k c k ‾ = ∑ k = m + 1 n ∣ c k ∣ 2
\left\| \sum_{k=1}^{n} c_{k} \mathbf{v}_{k} - \sum_{k=1}^{m} c_{k} \mathbf{v}_{k} \right\|^{2} = \sum_{k=m+1}^{n} c_{k} \overline{c_{k}} = \sum_{k=m+1}^{n} \left| c_{k} \right|^{2}
k = 1 ∑ n c k v k − k = 1 ∑ m c k v k 2 = k = m + 1 ∑ n c k c k = k = m + 1 ∑ n ∣ c k ∣ 2
Since we have { c k } k ∈ N ∈ ℓ 2 \left\{ c_{k} \right\}_{k \in \mathbb{N}} \in \ell^{2} { c k } k ∈ N ∈ ℓ 2 , so lim m → ∞ ∑ k = m + 1 n ∣ c k ∣ 2 = 0 \lim_{m \to \infty} \sum_{k=m+1}^{n} \left| c_{k} \right|^{2} = 0 lim m → ∞ ∑ k = m + 1 n ∣ c k ∣ 2 = 0 is true, and { ∑ k = 1 n c k v k } n ∈ N \left\{ \sum_{k =1}^{n} c_{k} \mathbf{v}_{k} \right\}_{n \in \mathbb{N}} { ∑ k = 1 n c k v k } n ∈ N is a Cauchy sequence of H H H , hence it converges.
■
(b) Based on (a) above, the following existence is guaranteed, and according to the Pythagorean theorem,
∥ ∑ k = 1 ∞ c k v k ∥ 2 = ∑ k = 1 ∞ ∣ c k ∣ 2
\left\| \sum_{k=1}^{\infty} c_{k} \mathbf{v}_{k} \right\|^{2} = \sum_{k=1}^{\infty} \left| c_{k} \right|^{2}
k = 1 ∑ ∞ c k v k 2 = k = 1 ∑ ∞ ∣ c k ∣ 2
Now let’s define T : ℓ 2 → H T : \ell^{2} \to H T : ℓ 2 → H as T { c k } k ∈ N : = ∑ k ∈ N c k v k T \left\{ c_{k} \right\} _{k \in \mathbb{N}} := \sum_{k \in \mathbb{N}} c_{k} \mathbf{v}_{k} T { c k } k ∈ N := ∑ k ∈ N c k v k .
Equivalent Conditions of Bessel Sequences
Given the sequences { v k } k ∈ N ⊂ H \left\{ \mathbf{v}_{k} \right\}_{k \in \mathbb{N}} \subset H { v k } k ∈ N ⊂ H and B > 0 B > 0 B > 0 in Hilbert space H H H , the following two propositions are equivalent.
{ v k } k ∈ N \left\{ \mathbf{v}_{k} \right\}_{k \in \mathbb{N}} { v k } k ∈ N is a Bessel sequence with Bessel bound B B B .
The operator defined as follows T T T is linear, bounded, and meets ∥ T ∥ ≤ B \left\| T \right\| \le \sqrt{B} ∥ T ∥ ≤ B .
T : ℓ 2 → H T { c k } k ∈ N : = ∑ k ∈ N c k v k
T : \ell^{2} \to H
\\ T \left\{ c_{k} \right\}_{k \in \mathbb{N}} := \sum_{k \in \mathbb{N}} c_{k} \mathbf{v}_{k}
T : ℓ 2 → H T { c k } k ∈ N := k ∈ N ∑ c k v k
Definition of Bessel Sequences
For a sequence { v k } k ∈ N ⊂ H \left\{ \mathbf{v}_{k} \right\}_{k \in \mathbb{N}} \subset H { v k } k ∈ N ⊂ H in Hilbert space H H H , if there is an B > 0 B > 0 B > 0 satisfying the following, { v k } k ∈ N \left\{ \mathbf{v}_{k} \right\}_{k \in \mathbb{N}} { v k } k ∈ N is called a Bessel sequence and B B B is called the Bessel bound .
∑ k = 1 ∞ ∣ ⟨ v , v k ⟩ ∣ 2 ≤ B ∥ v ∥ 2 , ∀ v ∈ H
\sum_{k=1}^{\infty} \left| \left\langle \mathbf{v} , \mathbf{v}_{k} \right\rangle \right|^{2 } \le B \left\| \mathbf{v} \right\|^{2},\quad \forall \mathbf{v} \in H
k = 1 ∑ ∞ ∣ ⟨ v , v k ⟩ ∣ 2 ≤ B ∥ v ∥ 2 , ∀ v ∈ H
Thus, since T T T is linear and bounded meeting ∥ T ∥ = 1 \left\| T \right\| = 1 ∥ T ∥ = 1 , { v k } k ∈ N \left\{ \mathbf{v}_{k} \right\}_{k \in \mathbb{N}} { v k } k ∈ N is a Bessel sequence with Bessel bound B = 1 B=1 B = 1 . According to the definition of Bessel sequences, the following holds.
∑ k ∈ N ∣ ⟨ v , v k ⟩ ∣ 2 ≤ ∥ v ∥ 2
\sum_{k \in \mathbb{N}} \left| \left\langle \mathbf{v} , \mathbf{v}_{k} \right\rangle \right|^{2} \le \left\| \mathbf{v} \right\|^{2}
k ∈ N ∑ ∣ ⟨ v , v k ⟩ ∣ 2 ≤ ∥ v ∥ 2
■
See Also