logo

Proof of the Generalized Bessel's Inequality in Hilbert Spaces 📂Hilbert Space

Proof of the Generalized Bessel's Inequality in Hilbert Spaces

Theorem1

If {vk}kN\left\{ \mathbf{v}_{k} \right\}_{k \in \mathbb{N}} is a regular orthogonal set in the Hilbert space HH, the following holds.

(a) For all {ck}kN2\left\{ c_{k} \right\}_{k \in \mathbb{N}} \in \ell^{2}, the infinite series kNckvk\sum_{k \in \mathbb{N}} c_{k} \mathbf{v}_{k} converges.

(b) For all vH\mathbf{v} \in H,

kNv,vk2v2 \sum_{k \in \mathbb{N}} \left| \left\langle \mathbf{v} , \mathbf{v}_{k} \right\rangle \right|^{2} \le \left\| \mathbf{v} \right\|^{2}

Explanation

A 2\ell^{2} space is a function space consisting of a set of complex sequences whose sum of squares converges. The Bessel inequality is important in Fourier analysis and can be generalized to any Hilbert space.

Proof

(a)

Let us take {ck}kN2\left\{ c_{k} \right\}_{k \in \mathbb{N}} \in \ell^{2}. For all natural numbers n>mn > m,

k=1nckvkk=1mckvk2=k=m+1nckvk2=k=m+1nckvk,l=m+1nclvl=k=m+1nl=m+1nckclvk,vl \begin{align*} \left\| \sum_{k=1}^{n} c_{k} \mathbf{v}_{k} - \sum_{k=1}^{m} c_{k} \mathbf{v}_{k} \right\|^{2} =& \left\| \sum_{k=m+1}^{n} c_{k} \mathbf{v}_{k} \right\|^{2} \\ =& \left\langle \sum_{k=m+1}^{n} c_{k} \mathbf{v}_{k} , \sum_{l=m+1}^{n} c_{l} \mathbf{v}_{l} \right\rangle \\ =& \sum_{k = m+1}^{n} \sum_{l = m+1}^{n} c_{k} \overline{c_{l}} \left\langle \mathbf{v}_{k} , \mathbf{v}_{l} \right\rangle \end{align*}

Due to the regular orthogonality of {vk}kN\left\{ \mathbf{v}_{k} \right\}_{k \in \mathbb{N}},

k=1nckvkk=1mckvk2=k=m+1nckck=k=m+1nck2 \left\| \sum_{k=1}^{n} c_{k} \mathbf{v}_{k} - \sum_{k=1}^{m} c_{k} \mathbf{v}_{k} \right\|^{2} = \sum_{k=m+1}^{n} c_{k} \overline{c_{k}} = \sum_{k=m+1}^{n} \left| c_{k} \right|^{2}

Since we have {ck}kN2\left\{ c_{k} \right\}_{k \in \mathbb{N}} \in \ell^{2}, so limmk=m+1nck2=0\lim_{m \to \infty} \sum_{k=m+1}^{n} \left| c_{k} \right|^{2} = 0 is true, and {k=1nckvk}nN\left\{ \sum_{k =1}^{n} c_{k} \mathbf{v}_{k} \right\}_{n \in \mathbb{N}} is a Cauchy sequence of HH, hence it converges.

(b)

Based on (a) above, the following existence is guaranteed, and according to the Pythagorean theorem,

k=1ckvk2=k=1ck2 \left\| \sum_{k=1}^{\infty} c_{k} \mathbf{v}_{k} \right\|^{2} = \sum_{k=1}^{\infty} \left| c_{k} \right|^{2}

Now let’s define T:2HT : \ell^{2} \to H as T{ck}kN:=kNckvkT \left\{ c_{k} \right\} _{k \in \mathbb{N}} := \sum_{k \in \mathbb{N}} c_{k} \mathbf{v}_{k}.

Equivalent Conditions of Bessel Sequences

Given the sequences {vk}kNH\left\{ \mathbf{v}_{k} \right\}_{k \in \mathbb{N}} \subset H and B>0B > 0 in Hilbert space HH, the following two propositions are equivalent.

  • {vk}kN\left\{ \mathbf{v}_{k} \right\}_{k \in \mathbb{N}} is a Bessel sequence with Bessel bound BB.

  • The operator defined as follows TT is linear, bounded, and meets TB\left\| T \right\| \le \sqrt{B}. T:2HT{ck}kN:=kNckvk T : \ell^{2} \to H \\ T \left\{ c_{k} \right\}_{k \in \mathbb{N}} := \sum_{k \in \mathbb{N}} c_{k} \mathbf{v}_{k}

Definition of Bessel Sequences

For a sequence {vk}kNH\left\{ \mathbf{v}_{k} \right\}_{k \in \mathbb{N}} \subset H in Hilbert space HH, if there is an B>0B > 0 satisfying the following, {vk}kN\left\{ \mathbf{v}_{k} \right\}_{k \in \mathbb{N}} is called a Bessel sequence and BB is called the Bessel bound. k=1v,vk2Bv2,vH \sum_{k=1}^{\infty} \left| \left\langle \mathbf{v} , \mathbf{v}_{k} \right\rangle \right|^{2 } \le B \left\| \mathbf{v} \right\|^{2},\quad \forall \mathbf{v} \in H

Thus, since TT is linear and bounded meeting T=1\left\| T \right\| = 1, {vk}kN\left\{ \mathbf{v}_{k} \right\}_{k \in \mathbb{N}} is a Bessel sequence with Bessel bound B=1B=1. According to the definition of Bessel sequences, the following holds.

kNv,vk2v2 \sum_{k \in \mathbb{N}} \left| \left\langle \mathbf{v} , \mathbf{v}_{k} \right\rangle \right|^{2} \le \left\| \mathbf{v} \right\|^{2}

See Also


  1. Ole Christensen, Functions, Spaces, and Expansions: Mathematical Tools in Physics and Engineering (2010), p78-79 ↩︎