logo

Hilbert Space to L2 Space: The Adjoint Operator 📂Hilbert Space

Hilbert Space to L2 Space: The Adjoint Operator

Theorem1

Let {vk}kN\left\{ \mathbf{v}_k \right\}_{k \in \mathbb{N}} be a sequence defined in a Hilbert space HH. Let a bounded linear operator T:2HT : \ell^{2} \to H be defined as follows.

T{ck}kN:=k=1ckvk T \left\{ c_{k} \right\}_{k \in \mathbb{N}} := \sum_{k=1}^{\infty} c_{k} \mathbf{v}_{k}

Then, the adjoint operator T:H2T^{ \ast } : H \to \ell^{2} of TT is represented as follows.

Tv={v,vkH}kN T^{ \ast } \mathbf{v} = \left\{ \left\langle \mathbf{v} , \mathbf{v}_{k} \right\rangle_{H} \right\}_{k \in \mathbb{N}}

Moreover, for all vH\mathbf{v} \in H,

k=1v,vkH2T2vH2 \sum_{k=1}^{\infty} \left| \left\langle \mathbf{v} , \mathbf{v}_{k} \right\rangle_{H} \right|^{2} \le \left\| T \right\|^{2} \left\| \mathbf{v} \right\|_{H}^{2}

And likewise, for all vH\mathbf{v} \in H,

TTv=kNv,vkHvk,vH TT^{ \ast } \mathbf{v} = \sum_{k \in \mathbb{N}} \left\langle \mathbf{v} , \mathbf{v}_{k} \right\rangle_{H} \mathbf{v}_{k} , \qquad \mathbf{v} \in H

Explanation

The space 2\ell^{2} is of significant importance among lpl^{p} spaces because it possesses an inner product, not just being an example of p=2p=2 but becoming a particularly important case in the Banach space, which deals with functionals. Especially because it is isometrically isomorphic to separable Hilbert spaces, it’s very important.

Proof

From the definition of TT,

v,T{ck}kNH=v,k=1ckvkH=k=1ckv,vkH \left\langle \mathbf{v} , T \left\{ c_{k} \right\}_{k \in \mathbb{N}} \right\rangle_{H} = \left\langle \mathbf{v} , \sum_{k=1}^{\infty} c_{k} \mathbf{v}_{k} \right\rangle_{H} = \sum_{k=1}^{\infty} \overline{c_{k}} \left\langle \mathbf{v} , \mathbf{v}_{k} \right\rangle_{H}

Since T:H2T^{ \ast } : H \to \ell^{2} maps an element of vH\mathbf{v} \in H to some sequence (Tv)k2\left( T^{ \ast } \mathbf{v} \right)_{k} \in \ell^{2}, it can be represented as follows.

Tv={(Tv)k}kN T^{ \ast } \mathbf{v} = \left\{ \left( T^{ \ast } \mathbf{v} \right)_{k} \right\}_{k \in \mathbb{N}}

Since the operator is linear and bounded,

Tv2=(k=1(Tv)k2)1/2TvH \left\| T^{ \ast } \mathbf{v} \right\|_{2} = \left( \sum_{k=1}^{\infty} \left| \left( T^{ \ast } \mathbf{v} \right)_{k} \right|^{2} \right)^{1/2} \le \left\| T^{ \ast } \right\| \left\| \mathbf{v} \right\|_{H}

This implies the following for all kNk \in \mathbb{N}.

(Tv)k2TvH \left\| \left( T^{ \ast } \mathbf{v} \right)_{k} \right\|_{2} \le \left\| T^{ \ast } \right\| \left\| \mathbf{v} \right\|_{H}

In other words, the mapping v(Tv)k\mathbf{v} \mapsto \left( T^{ \ast } \mathbf{v} \right)_{k} is bounded for all kNk \in \mathbb{N}.

Riesz Representation Theorem

Let HH be a Hilbert space. There exists a unique wH\mathbf{w} \in H satisfying f(x)=x,wf ( \mathbf{x} ) = \left\langle \mathbf{x} , \mathbf{w} \right\rangle and fH=wH\| f \|_{H^{\ast}} = \| \mathbf{w} \|_{H} for the linear functional fHf \in H^{ \ast } and xH\mathbf{x} \in H in HH.

(Tv)k=v,wkH \left( T^{ \ast } \mathbf{v} \right)_{k} = \left\langle \mathbf{v} , \mathbf{w}_{k} \right\rangle_{H}

Therefore, according to the Riesz Representation Theorem, there must exist wkH\mathbf{w}_{k} \in H satisfying the following. This means that TvT^{ \ast } \mathbf{v} can be represented like this for some {wk}kNH\left\{ \mathbf{w}_k \right\}_{k \in \mathbb{N}} \subset H.

Tv={v,wkH}kN T^{ \ast }\mathbf{v} = \left\{ \left\langle \mathbf{v} , \mathbf{w}_{k} \right\rangle_{H} \right\}_{k \in \mathbb{N}}

Then, according to the definition of TT^{ \ast },

k=1ckv,vkH=v,T{ck}kNH=Tv,{ck}kN2={v,wkH}kN,{ck}kN2=k=1ckv,wkH \begin{align*} \sum_{k=1}^{\infty} \overline{c_{k}} \left\langle \mathbf{v} , \mathbf{v}_{k} \right\rangle_{H} =& \left\langle \mathbf{v} , T \left\{ c_{k} \right\}_{k \in \mathbb{N}} \right\rangle_{H} \\ =& \left\langle T^{ \ast } \mathbf{v} , \left\{ c_{k} \right\}_{k \in \mathbb{N}} \right\rangle_{\ell^{2}} \\ =& \left\langle \left\{ \left\langle \mathbf{v} , \mathbf{w}_{k} \right\rangle_{H} \right\}_{k \in \mathbb{N}} , \left\{ c_{k} \right\}_{k \in \mathbb{N}} \right\rangle_{\ell^{2}} \\ =& \sum_{k=1}^{\infty} \overline{c_{k}} \left\langle \mathbf{v} , \mathbf{w}_{k} \right\rangle_{H} \end{align*}

Summarizing,

k=1ckv,vkH=k=1ckv,wkH \sum_{k=1}^{\infty} \overline{c_{k}} \left\langle \mathbf{v} , \mathbf{v}_{k} \right\rangle_{H} = \sum_{k=1}^{\infty} \overline{c_{k}} \left\langle \mathbf{v} , \mathbf{w}_{k} \right\rangle_{H}

Thus,

Tv={v,wkH}kN={v,vkH}kN T^{ \ast } \mathbf{v} = \left\{ \left\langle \mathbf{v} , \mathbf{w}_{k} \right\rangle_{H} \right\}_{k \in \mathbb{N}} = \left\{ \left\langle \mathbf{v} , \mathbf{v}_{k} \right\rangle_{H} \right\}_{k \in \mathbb{N}}

Then, from the properties of the adjoint operator, since T=T| T | = \left\| T^{ \ast } \right\| and TT^{ \ast } is bounded,

Tv22T2vH2T2vH2 \left\| T^{ \ast } \mathbf{v} \right\|_{\ell^{2}}^{2} \le \left\| T^{ \ast } \right\|^{2} \left\| \mathbf{v} \right\|_{H}^{2} \le \left\| T \right\|^{2}\left\| \mathbf{v} \right\|_{H}^{2}

If rewritten in series form,

k=1v,vkH2T2vH2 \sum_{k=1}^{\infty} \left| \left\langle \mathbf{v} , \mathbf{v}_{k} \right\rangle_{H} \right|^{2} \le \left\| T \right\|^{2} \left\| \mathbf{v} \right\|_{H}^{2}

Finally, from T{ck}kN:=k=1ckvkT \left\{ c_{k} \right\}_{k \in \mathbb{N}} := \sum_{k=1}^{\infty} c_{k} \mathbf{v}_{k} and Tv={v,vkH}kNT^{ \ast } \mathbf{v} = \left\{ \left\langle \mathbf{v} , \mathbf{v}_{k} \right\rangle_{H} \right\}_{k \in \mathbb{N}},

TTv=kNv,vkHvk,vH TT^{ \ast } \mathbf{v} = \sum_{k \in \mathbb{N}} \left\langle \mathbf{v} , \mathbf{v}_{k} \right\rangle_{H} \mathbf{v}_{k} , \qquad \mathbf{v} \in H


  1. Ole Christensen, Functions, Spaces, and Expansions: Mathematical Tools in Physics and Engineering (2010), p75-76 ↩︎